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Abstract

Continuous groups of transformation acting on the expnded space of
variables, which includes the equation parameters in addition to inde-
pendent and dependent variables, are considered. It is shown that use
of the expanded transformations enables one to enrich the concept Lie
theory of symmetry group for partial differential equations.
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1 Introduction

In applied group analysis, Lie theory of symmetry group for differential equa-
tions, constituted by Sophus Lie, is the most important solution method for
the nonlinear problems in the field of applied maths. The fundamentals of
Lie’s theory are based on the invariance of the equation under transformation
groups of independent and dependent variables, so called Lie groups. This
approach is used to analyisis the symmetries of the differential equations and
may be apoint, a contact, and a generalized or nonlocal symmetry. In the
last century, the application of the Lie group method has been developed by
a number of mathematicians. Ovsiannikov [7], Olver [15], Ibragimov [9], [10],
Baumann [2] and Bluman and Anco [5] are some of the mathematicians who
have enormous amount of studies in this field.

The existence of symmetries of diferential equations under Lie group of
transformations often allows those equations to be reduced to simpler equa-
tions. One of the major accomlishment of Lie was to identify that the proper-
ties of global transformations of the group are completely and uniquely deter-
mined by the infinitesimal transformations around the identity transformation.
This allows the nonlinear relations for the identification of invariance groups to
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be dealing with global transformation equations, we use differential operators,
called the group generators, whose exponentiation generates the action of the
group. The collection of these differentail operators forms the basis for the Lie
algebra. There is a one-to-one correspondence between the Lie groups and the
associated Lie algebras.

A basic problem concerning the group invariant solution is its classifica-
tion. Since a Lie group (or Lie algebra) usually contain inifitely many sub-
groups (or subalgebras) of the same dimensional, a classification of them up to
some equivalence relation is necessary. Ovsiannikov [7] given equivalent of two
subalgebras of a given Lie algebra. Optimal system consists of representative
elements of each equality class. Disussion on optimal systems can be found
in [15], [7]. Some examples of optimal system can also be found in Ibragimov
[10].

Among those transformation groups, an expanded Lie group transformation
of a partial differential equation is a continuious group transformation which is
acting on expanded space of variables that includes the equation parameters in
addition to independent and dependant variables. The transformations can be
found using the Lie infinitesimal criterion with groups of point transfomations,
leaving aside problems involving generalized symmetry groups.

An expanded group of transformations represents a particular case of the
equivalence group that presrves the class of partial differential equations which
holds the same structure. The approach to find these equivalence transforma-
tion groups with th use of the Lie infinitesimal tecnique was introduced by
Ovasiannikov [7] who suggested using the Lie infinitesimal principle in the
properly extend space of variables which include dependent and independent
variables, arbitrary functions and their derivatives. This idea, later, extended
by Akhatov et al [1]. More recently, Burde [6] used the Lie groups of trans-
formations in the expanded space of variables including equation parameters
enables one to enrich the cocept of similarity reductions as applied to partial
differential equations. And also he used these groups for finding changes of
variables that remove some terms from the original equation.

In this paper, we have used an Expande Lie group transformation and sim-
ilarity reduction to obtain the exact analytical solution of Generalized Boussi-
nesq Equation.

2 Application of the expanded transformations

The example applies the tecnique to the Generalised Boussinesq (GBQ) Equa-
tion

uxxxx + putuxx + quxuxt + ru2
xuxx + utt = 0 (1)
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where p,q and r are constants such that r �= 0 and subscripts denote partial
derivatives.

Clasical symmetry reductions of some special cases of equation (1) have
been discussed by Schwarz [18], Clarkson [13], Kawamoto [16], Lou and Ni
[17], Paquin and Winternitz [4]. Clasical symmetrys of some different type of
equation (1) have been investigated by Clarkson and Priestly [14], Gandarias
and Bruzon [8]. Clarkson and Kruskal [11] developed a Direct method (in the
sequel referred as the Direct method) for finding symmetry reductions which
is used to obtain previously unknown reductions of the Boussinesq Equation
and Clarkson and Ludlow [12] derived smmetry reductions of GBQ by using
the Direct method and said that those derived by using the Lie group method
with one illustration. Recently Burde [6] showed that the use the Lie groups
of transformation in the expanded space of variables including parameters
equation improved the concept of similarity reductions as applied to partial
differential equations.

In this paper our main motivation and starting point based on Burde’s
paper [6], is to demonstrate that the procedure of symmetry reduction imple-
mented in the expanded space which reduces GBQ systematically to a previ-
ously unknown target ordinary differential equation by the suitable choice of
expanded group transformaton.

To illustrate the process we introduce a cofficient (parameter) into the
equation ”artifically”, for example, in front of the last term equation (1), i.e.

uxxxx + putuxx + quxuxt + ru2
xuxx + autt = 0. (2)

It may appear that introducing this kind of coeffient makes useless the
physics of the problem, but one may always set a=1 in the final stage. Cur-
rently for convenience we choose the coefficients

p = q, r =
q2

2a

and rewrite equation (2) as

uxxxx + qutuxx + quxuxt +
q2

2a
u2

xuxx + autt = 0. (3)

To apply the classical Lie symmetry group method to equation (3), we
perform symmetry analysis. Let us consider a one-parameter Lie group of
infinitesimal transformation

x → x + εξ1(x, t, u, q, a) + O(ε2)

t → t + εξ2(x, t, u, q, a) + O(ε2)

t → t + εξ2(x, t, u, q, a) + O(ε2) (4)
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q → q + εQ(x, t, u, q, a) + O(ε2)

a → a + εA(x, t, u, q, a) + O(ε2)

where ε is group parameter in the expanded (x, t, u, q, a) space. The vector
field associated with the above group of transformations can be written as

X = ξ1
∂

∂x
+ ξ2

∂

∂t
+ η

∂

∂u
+ Q(q)

∂

∂q
+ A(a)

∂

∂a
. (5)

This is symmetry generator and invariance of equation (3) under transforma-
tion (4). The associated Lie algebra of the infinitesimal system involves the
set of vector fields of this form.

The symmetry condition

pr(4)XΔ |�= 0

yields an overdetermined system of PDE for the unknown functions ξ1, ξ2 and
η where Δ is the manifold defined by (3) in jet space J (3) and pr(4)X is the
fourth prolongation of X. We obtain this system by using package MathLie
[2] and this system can solve if provide following system

(ξ1)u = 0, (ξ2)u = 0, (ξ2)x = 0, (η)uu = 0

−6(ξ1)xx + 4(η)xu = 0

−q(ξ1)xx + 3q(η)xu = 0.

Then we obtain (ξ1)xx = (η)xu = 0 and so (η)t = (ξ1)tt = 0. Thus the deter-
mining equations can be obtained as:

A

a
− 2(ξ2)t + (η)u = 0

Q

q
− 2(ξ1)x − (ξ2)t + 2(η)u = 0

− A

2a
+

Q

q
− 2(ξ1)x +

3

2
(η)u = 0

−4(ξ1)x + (η)u = 0

−2a(ξ1)t + q(η)x = 0

−a(ξ2)tt + q(η)xx = 0

−2a(ξ1)xt + q(η)xx = 0

The resulting system of equations easily be solved to give the infinitesimals

ξ1 = C1xt + C0x + C3t + C4
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ξ2 = C1 + t2 + 3C0t + C2

η = 4C0u +
a

q
C1x

2 +
2a

q
C3x + C5 (6)

Q = −3qC0

A = 2aC0

which includes the determination of the generators A and Q. Here it is worth
to note that not only the generators A and Q but also the coefficients C0, C1,
C2, C3, C4 and C5 are depended on the parameters a and q. The symmetry
variables are then found by solving the characteristc equations

dx

ξ1
=

dt

ξ2
=

du

η
=

da

A
=

dq

Q

and then, substituting the resulting expression into (3), one obtains the re-
duced equation. Hence, symmetry generator of equation (3) is

X = ξ1
∂

∂x
+ ξ2

∂

∂t
+ η

∂

∂u
+ Q

∂

∂q
+ A

∂

∂a
.

The presence of these arbitrary constants lead to a finite-dimensional Lie
algebra of symmetries. A general element of this algebra is written as

U = a0X0 + a1X1 + a2X2 + a3X3 + a4X4 + a5X5

where

X0 = x
∂

∂x
+ 3t

∂

∂t
+ 4u

∂

∂u
− 3q

∂

∂q
+ 2a

∂

∂a
,

X1 = xt
∂

∂x
+ t2

∂

∂t
+

a

q
x2 ∂

∂u
, X2 =

∂

∂t
,

X3 = t
∂

∂x
+

2a

q
x

∂

∂u
, X4 =

∂

∂x
, X5 =

∂

∂u

construct a basis of vector space. The Lie algebra of infinitesimal symmetries
for equation (3) is spanned by these base vectors. Lie algebra admited by (3)

L6 = {X0 = x
∂

∂x
+ 3t

∂

∂t
+ 4u

∂

∂u
− 3q

∂

∂q
+ 2a

∂

∂a
, X1 = xt

∂

∂x
+ t2

∂

∂t
+

a

q
x2 ∂

∂u
,

X2 =
∂

∂t
, X3 = t

∂

∂x
+

2a

q
x

∂

∂u
, X4 =

∂

∂x
, X5 =

∂

∂u
}.
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3 One-Parameter Optimal System

We can find a family similarity solutions using one-dimensional subalgebras
which spannd by X0, X1, X2, X3, X4, X5.In this set there are similarity
solutions which result from other similarity solutions of the same set applying
a transformation of the symmetry group. It would be profitable to heve a
minimal list of similarity solutions such that with these elements one can get
all other similarity solutions via transformation. Such a minimal list is called
an one-parameter optimal system and their elements are essentially different
similarity soltions.

The construction of the one-paremeter optimal system of one-dimensional
subalgebras can be made by using a global matrix of the adjoint transforma-
tions as suggested by Ovsiannikov [7]. In this paper we follow, instead, the
method by Olver [15] which uses a slightly different technique. The problem
of deriving an optimal system of subalgebras spanned by these operators is
equivalent to find an optimal system of Lie symmetries (or group invariant
solutions). This is possible because there is a connection of the Lie group
and adjoint representation of Lie algebra. We constitute adjoint representa-
tion for to define an equivalence relation on one-dimensional subalgebras which
generate by X0, X1, X2, X3, X4, X5.

Ad(exp(εXi))Xj = Xj − ε[Xi, Xj] +
1

2
ε2[Xi[Xi, Xj ]] − ...

where [Xi, Xj] is the usual commutator, given by

[Xi, Xj] = XiXj − XjXi.

Let L1,1 and L1,2 are one-dimensional subalgebras of L6 and G is lie group
with the corresponding Lie algebra L6 . If there exists an inner automorphism
Ad(g)εInt(G)(gεG) for the related subalgebras

L1,1 = Ad(g)(L1,2)

then similarity solution of L1,1 is equivalent similarity solution of L1,2.Thus
we need subalgebras of G with the corresponding one-dimensional subalgebras
which spannd by X0, X1, X2, X3, X4, X5 for to constitute adjoint table. The
one-paremeter subgroups which corresponding generators X0, X1, X2, X4, X5

are

G0 : (x, t, u, q, a) −→ (eε0x, e3ε0t, e4ε0u, e−3ε0q, e2ε0a)

G1 : (x, t, u, q, a) −→ (x, t + ε2, u, q, a)

G2 : (x, t, u, q, a) −→ (x − e−ε1 , t − 1

ε1
, u − a

q
e−2ε1, q, a)
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G4 : (x, t, u, q, a) −→ (x + ε4, t, u, q, a)

G4 : (x, t, u, q, a) −→ (x, t, u + ε5, q, a).

But the one-paremeter subgroup which corresponding generator is not deter-
mined with to solve ordinary differential equation system which is

dx

dε
= t,

dt

dε
= 0,

du

dε
=

2a

q
x,

dq

dε
= 0,

da

dε
= 0

with x |ε=0= x, t |ε=0= t, u |ε=0= u, q |ε=0= q, a |ε=0= a [9]. Thus optimal
system is not determined.

4 Concluding remarks

In this paper, we have demonstrated that new application of the Lie group
method to partial differential equations may be arise due to the use of expanded
transformation groups.
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