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Abstract

In this paper we have proved fixed point theorems for Kannan map-
pings and generalized contraction mappings in dislocated quasi-metric
space. Also discussed a common fixed point theorem in complete dislo-
cated metric space.
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1 Introduction

Banach[1922] proved a celebrated fixed point theorem for contractions map-
pings in complete metric space. It is well-known as a Banach fixed point
theorem. It has many applications in various branches of mathematics such as
differential equation, integral equation etc. But Kannan[1968] proved a fixed
point theorem for new types of contraction mappings called Kannan mappings
in a complete metric space. We have to note here that Kannan mapping may
not be continuous. Lj. B. Ciric [1974] gave a generalization of Banach con-
traction principle in metric space space. In this paper we study the mapping
refereed by Kannan and Lj. B. Ciric and obtained fixed point theorems in
dislocated quasi-metric metric.
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2 Preliminary Notes

Definition 2.1 Let X be a nonempty set and let d : X × X → [0,∞) be a
function satisfying following conditions:
(i) d(x, y) = d(y, x) = 0, implies x = y,
(ii)d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈ X.
Then d is called a dislocated quasi-metric on X. If d satisfies d(x, x) = 0, then
it is called a quasi-metric on X. If d satisfies d(x, y) = d(y, x), then it is called
dislocated metric.

Definition 2.2 A sequence {xn} in dq-metric space (dislocated quasi-metric
space) (X, d) is called Cauchy if for given ε > 0, ∃n0 ∈ N such that ∀m,n ≥ n0,
implies d(xm, xn) < ε or d(xn, xm) < ε i.e. min{d(xm, xn), d(xn, xm)} < ε.

In above definition if we replace d(xm, xn) < ε or d(xn, xm) < ε by
max{d(xm, xn), d(xn, xm)} < ε, the sequence {xn} is called ‘bi’Cauchy. Note
that every bi Cauchy sequence is Cauchy.

Definition 2.3 A sequence {xn} dislocated quasi-converges to x if

lim
n→∞

d(xn, x) = lim
n→∞

d(x, xn) = 0.

In this case x is called a dq-limit of {xn} and we write xn → x.

Proposition 2.4 Every convergent sequence in a dq-metric space is ‘bi ’Cauchy.

Converse of proposition 2.4 may not be true. Proof of the following lemma is
obvious.

Lemma 2.5 Every subsequence of dq-convergent sequence to a point x0 is
dq-convergent to x0

Definition 2.6 A dq-metric space space (X, d) is called complete if every
Cauchy sequence in it is a dq-convergent.

The notion of the dislocated topologies is useful in the context of logic pro-
gramming. Recently, Zeyada et al.[2005] have established a fixed point theorem
in a complete dislocated quasi-metric space, as stated in following lemma and
theorem.

Lemma 2.7 Let (X, d) be a dq-metric space. If f : X → X is a contraction
function, then {(fn(x0))} is a Cauchy sequence for each x0 ∈ X.

Theorem 2.8 Let (X, d) be a complete dq-metric space and let f : X → X
be a continuous contraction function. Then f has a unique fixed point.
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3 Main Results

The following definition is introduced by R. Kannan [1]

Definition 3.1 A mapping T : X → X is called Kannan mapping if

d(Tx, Ty) ≤ α{d(x, Tx) + d(y, Ty)}

for all x, y ∈ X and 0 ≤ α < 1/2.

The following definition is introduced by Lj. B. Ciric[2].

Definition 3.2 A mapping T : X → X is said to generalized contraction
iff for every x, y ∈ X there exist non negative numbers α, β, γ, and δ, which
may depends on both x and y, such that sup{α + β + γ + 2δ : x, y ∈ X} < 1
and

d(Tx, Ty) ≤ αd(x, y) + βd(x, Tx) + γd(y, Ty)

+ δ[d(x, Ty) + d(y, Tx)].

Theorem 3.3 Let (X, d) be a complete dq-metric space. If T : X → X be
a continuous mapping satisfying

d(Tx, Ty) ≤ α{d(x, Tx) + d(y, Ty)} (1)

for all x, y ∈ X and 0 ≤ α < 1/2. Then T has a unique fixed point.

Proof: Let {xn} be a sequence in X, defined as follows.
Let x0 ∈ X, f(x0) = x1, f(x1) = x2, · · · , f(xn) = xn+1, · · · .
Consider

d(xn, xn+1) = d(Txn−1, Txn)

≤ α{d(xn−1, Txn−1) + d(xn, Txn)}
= α{d(xn−1, xn) + d(xn, xn+1)}

Therefore

d(xn, xn+1) ≤ α

1 − α
d(xn−1, xn)

= λd(xn−1, xn)

where λ =
α

1 − α
with 0 ≤ λ < 1. Similarly we will show that

d(xn−1, xn) ≤ λd(xn−2, xn−1),
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and

d(xn, xn+1) ≤ λ2d(xn−2, xn−1)

Thus

d(xn, xn+1) ≤ λnd(x1, x0).

Since 0 ≤ λ < 1, as n → ∞, λn → 0. Hence {xn} is a dq-cauchy sequence in
X. Thus {xn} dislocated quasi-converges to some t0. Since T is continuous,
we have

T (t0) = lim T (xn) = lim xn+1 = t0.

Thus T (t0) = t0. Thus T has a fixed point.
Uniqueness: Let x be a fixed point of T then by definition(3.1)
d(x, x) = d(Tx, Tx) ≤ α{d(x, x) + d(x, x)}
i.e. d(x, x) ≤ 2αd(x, x) which gives d(x, x) = 0, since 0 ≤ 2α < 1 and
d(x, x) ≥ 0. Thus d(x, x) = 0 if x is a fixed point of T .
Let x, y ∈ X be fixed point of T . That is , Tx = x, Ty = y Then by definition
(3.1),

d(x, y) = d(Tx, Ty) ≤ α{d(x, x) + d(y, y)}
= 0, since d(x, x) = 0 = d(y, y),

so d(x, y) ≤ 0 and d(x, y) ≥ 0 Hence d(x, y) = 0. Similarly d(y, x) = 0 and
hence x = y.
Thus fixed point of T is unique.

Theorem 3.4 Let (X, d) be a complete dq-metric space. Let T : X → X
be a continuous generalized contraction. Then T has a unique fixed point.

Proof: Let {xn} be a sequence in X, defined as follows.
Let x0 ∈ X, f(x0) = x1, f(x1) = x2, · · · , f(xn) = xn+1, · · · .
Consider

d(xn, xn+1) = d(Txn−1, Txn)

≤ αd(xn−1, xn) + βd(xn−1, Txn−1) + γd(xn, Txn)

+ δ[d(xn−1, Txn) + d(xn, Txn−1)][see def 3.2]

= αd(xn−1, xn) + βd(xn−1, xn) + γd(xn, xn+1)

+ δ[d(xn−1, xn+1) + d(xn, xn)]

≤ αd(xn−1, xn) + βd(xn−1, xn) + γd(xn, xn+1)

+ δd(xn−1, xn) + δd(xn, xn+1)
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Therefore,

d(xn, xn+1) ≤ α + β + δ

1 − (γ + δ)
d(xn−1, xn)

= λd(xn−1, xn),

where λ =
α + β + δ

1 − (γ + δ)
. Similarly, we have d(xn−1, xn) ≤ λd(xn−2, xn−1). In

this way, we get

d(xn, xn+1) ≤ λnd(x0, x1).

Since 0 ≤ λ < 1, so for n → ∞, λn → 0 we have d(xn, xn+1) → 0. Similarly we
show that d(xn+1, xn) → 0. Hence {xn} is a Cauchy sequence in the complete
dislocated quasi-metric space X, so there is a point t0 ∈ X, such that xn → t0.
Since T is continuous, so

T (t0) = lim T (xn) = lim xn+1 = t0.

Thus T (t0) = t0, so T has a fixed point.
Uniqueness: If x ∈ X is a fixed point of T then by given condition, we have

d(x, x) = d(Tx, Tx) ≤ (α + β + γ + 2δ)d(x, x)

which is true only if d(x, x) = 0, since 0 ≤ α + β + γ + 2δ < 1 and d(x, x) ≥ 0.
Thus d(x, x) = 0 for a fixed point x of T .
Let x, y be fixed point of T . that is x = Tx and y = Ty. Then by (3.1)

d(x, y) = d(Tx, Ty) ≤ αd(x, y) + βd(x, Tx) + γd(y, Ty)

+ δ[d(x, Ty) + d(y, Tx)]

= αd(x, y) + βd(x, x) + γd(y, y) + δ[d(x, y) + d(y, x)]

= αd(x, y) + δ[d(x, y) + d(y, x)]

(2)

Similarly we have

d(x, y) = αd(y, x) + δ[d(y, x) + d(x, y)].

Hence |d(x, y)− d(y, x)| ≤ α|d(x, y)− d(y, x)|, which implies d(x, y) = d(y, x),
since 0 ≤ α < 1. Again from (3.2) d(x, y) ≤ (α + 2δ)d(x, y), which gives
d(x, y) = 0, since 0 ≤ α + 2δ < 1. Further d(x, y) = d(y, x) = 0 gives x = y.
Hence fixed point is unique. Hence the proof.
Remark: In theorem (3.4) if we put α = δ = 0 and β = γ then we obtain
theorem (3.3).
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Theorem 3.5 Let (X,d) be a complete dislocated metric space. Let f :
X → X be continuous mapping satisfies;

d(Tx, Ty) ≤ αd(x, y) + βd(x, Tx) + γd(y, Ty)

+ δ
d(x, Tx)d(y, Ty)

d(x, y)
+ μ

d(x, Ty)d(y, Tx)

d(x, y)
,

for all x, y ∈ X and α, β, γ, δ, μ ≥ 0 with α + β + γ + δ + 4μ < 1. Then T has
a unique fixed point.

Proof: Let {xn} be a sequence in X, defined as follows.
Let x0 ∈ X, f(x0) = x1, f(x1) = x2, · · · , f(xn) = xn+1, · · · .
Consider

d(xn, xn+1) = d(Txn−1, Txn)

≤ αd(xn−1, xn) + βd(xn−1, Txn−1) + γd(xn, Txn)

+ δ
d(xn−1, Txn−1)d(xn, Txn)

d(xn−1, xn)
+ μ

d(xn−1, Txn)d(xn, Txn−1)

d(xn−1, xn)

= αd(xn−1, xn) + βd(xn−1, xn) + γd(xn, xn+1)

+ δ
d(xn−1, xn)d(xn, xn+1)

d(xn−1, xn)
+ μ

d(xn−1, xn+1)d(xn, xn)

d(xn−1, xn)

≤ (α + β)d(xn−1, xn) + (γ + δ)d(xn, xn+1) + 2μd(xn−1, xn+1)

≤ (α + β + 2μ)d(xn−1, xn) + (γ + δ + 2μ)d(xn, xn+1)

Hence

d(xn, xn+1) ≤ α + β + 2μ

1 − (γ + δ + 2μ)
d(xn, xn+1)

= λd(xn−1, xn).

where λ =
α + β + 2μ

1 − (γ + δ + 2μ)
, with 0 ≤ λ < 1. Similarly we show that

d(xn−1, xn) ≤ λd(xn−2, xn−1). Continuing in this way we have d(xn, xn+1) =
λnd(x0, x1), since 0 ≤ λ < 1, λn → 0 n → ∞,. Hence {xn} is a Cauchy
sequence in complete dislocated metric space X. So there ia point u ∈ X such
that xn → u. Since T is a continuous, so T (u) = T (lim xn) = lim T (xn) =
lim xn+1 = u. Thus u is a fixed point of T .
Uniqueness: Let u, v be fixed point of T . By condition we have

d(u, v) = d(Tu, Tv)

≤ αd(u, v) + βd(u, u) + γd(v, v)

+ δ
d(u, u)d(v, v)

d(u, v)
+ μ

d(u, v)d(v, u)

d(u, v)

= αd(u, v) + βd(u, u) + γd(v, v) + δ
d(u, u)d(v, v)

d(u, v)
+ μd(u, v)
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Now

d(u, u) = d(Tu, Tu)

≤ αd(u, u) + βd(u, u) + γd(u, u) + δd(u, u) + μd(u, u)

= (α + β + γ + δ + μ)d(u, u).

Since (0 ≤ α + β + γ + δ + μ) < 1, we have d(u, u) = 0. Similarly d(v, v) = 0.
Hence the fixed points u, v we get

d(u, v) ≤ (α + μ)d(u, v)

Since 0 ≤ α + μ < 1. so we must have d(u, v) = 0. Similarly we have
d(v, u) = 0. Hence u = v.

Theorem 3.6 Let (X,d) be a complete dislocated metric space. Let f, g :
X → X be continuous mappings satisfy;

d(fx, gy) ≤ h max{d(x, y), d(x, fx), d(y, gy)},
for all x, y ∈ X and 0 < h < 1. Then f and g have common fixed point.

Proof: Let x0 ∈ X. Define the sequence {xn} by x1 = f(x0), x2 = g(x1), · · · , x2n =
g(x2n+1), x2n+1 = f(x2n), · · · .
Consider

d(x2n+1, x2n+2) = d(fx2n, gx2n+1)

≤ h max{d(x2n, x2n+1), d(x2n, fx2n), d(x2n+1, gx2n+1)}
= h max{d(x2n, x2n+1), d(x2n, x2n+1), d(x2n+1, x2n+2)}
= hd(x2n, x2n+1).

Therefore

d(x2n+1, x2n+2) ≤ hd(x2n, x2n+1).

Similarly

d(x2n, x2n+1) ≤ hd(x2n−1, x2n).

and so

d(x2n+1, x2n+2) ≤ h2d(x2n−1, x2n).

In this way we have

d(x2n+1, x2n+2) ≤ h2nd(x0, x1).
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Since h < 1, as h2n → 0 as n → ∞. Thus {xn} is a Cauchy sequence in a
dislocated metric X. There exists a point u ∈ X such that xn → u. Therefore
the subsequences {fx2n} → u and {gx2n+1} → u. Since f and g are continuous
function, so we have fu = u and gu = u.
Uniqueness of common fixed point: Let u, v be a common fixed point of f and
g. Then

d(u, v) = d(fu, gv)

≤ lim h max{u, v), d(u, fu), d(v, gv)}
= h max{d(u, v), d(u, u), d(v, v)}

Replacing v by u, we get d(u, u) ≤ hd(u, u), and hence d(u, v) = 0. Similarly
d(v, u) = 0 and so u = v.

d(u, u) = d(fu, limx2n+2)

= lim d(fu, gx2n+1)

≤ lim h max{d(fu, x2n+1), d(u, fu), d(x2n+1, x2n+2)}
= h max{d(u, u), d(u, u), d(u, u)}

Since h < 1, we have d(u, u) = 0. Similarly we have d(v, v) = 0. Therefore
d(u, v) < d(u, v), a contradiction. Hence the proof.
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