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Abstract

In this paper we propose, a collocation method for solving nonlinear
singular Lane-Emden equation which is a nonlinear ordinary differential
equation on semi-infnite interval. This approach is based on a general-
ized Laguerre polynomial collocation method. This method reduces the
solution of this problem to the solution of a system of algebraic equa-
tions.We also present the comparison of this work with some well-known
results and show that the present solution is highly accurate.
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1 Introduction

In the study of stellar structure [5] an important mathematical model described
by the second-order ordinary differential equation

xy′′ + 2y′ + xg(y) = 0, x > 0, (1)

arises, where g(y) is some given function of y. Among the most popular form
of g(y) is

g(y) = ym. (2)

which is subject to the conditions

y(0) = 1, y′(0) = 0. (3)
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This equation is standard Lane-Emden equation. It was first proposed by Lane
[18] and studied in more detail by Emden [7].
The Lane-Emden equation describes a variety of phenomena in theoretical
physics and astrophysics, including aspects of stellar structure, the thermal
history of a spherical cloud of gas, isothermal gas spheres, and thermionic cur-
rents, [4]. Since then the equation has been a centre of attention for many
researchers.
The equation also appears in other contexts, e.g., in case of radiatively cooling,
self-gravitating gas clouds, in the mean-field treatment of a phase transition
in critical absorption or in the modeling of clusters of galaxies.
The physically interesting range of m is 0 ≤ m ≤ 5. Numerical and perturba-
tion approaches to solve equation (1) with g(y) = ym have been considered by
various authors. It has been claimed in the literature that only for m = 0, 1
and 5 the solutions of the Lane-Emden equation(also called the polytropic dif-
ferential equations) could be given in closed form.
In fact, for m = 5, only a 1-parameter family of solutions is presented. The so
called generalized Lane-Emden equation of the first kind have been looked at
in Goenner and Havas [9] and Goenner [10].
Recently, many analytic methods have been used to solve Lane-Emden equa-
tions, the main difficulty arises in the singularity of the equation at x = 0.
Currently, most techniques in use for handling the Lane-Emden-type prob-
lems are based on either series solutions or perturbation techniques.
Bender et al. [3] proposed a perturbative technique for solving nonlinear differ-
ential equation such as Lane-Emden. Shawagfeh [16] applied a nonperturbative
approximate analytic solution for the Lane-Emden equation using the Adomian
decomposition method. Wazwaz [19] employed the Adomian decomposition
method with an alternate framework designed to overcome the difficulty of the
singular point. Liao [14] provided an analytic algorithm for Lane-Emden type
equations. This algorithm logically contains the well-known Adomian decom-
position method. Parand and Razzaghi [15] presented a numerical technique
to solve higher ordinary deferential equations such as Lane-Emden. Their
approach was based on a rational Legendre tau method.Bataineh et al. [1]
obtained analytic solutions of singular initial value problems (IVPs) of the
Emden-Fowler type by the homotopy analysis method (HAM).
Spectral methods have been successfully applied in the approximation of differ-
ential boundary value problems defined in unbounded domains.For problems
whose solutions are sufficiently smooth, they exhibit exponential rates of con-
vergence/spectral accuracy. There are three most commonly used spectral ver-
sions, namely the Galerkin-type, tau and collocation method. Among these,
an approach consists in using the collocation method or the pseudospectral
method based on the nodes of Gauss formulas related to unbounded intervals
[13]. Collocation method has become increasingly popular for solving differen-
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tial equations also they are very useful in providing highly accurate solutions to
differential equations. In this paper, we aim to employ the collocation method
to a singular form of Lane-Emden type initial value problems directly.

2 Properties of generalized Laguerre polyno-

mials

This section is devoted to the introduction of the basic notions and working
tools concerning orthogonal generalized Laguerre polynomials.
The Laguerre approximation has been widely used for numerical solutions
of differential equations on semi-infinite intervals. Let w(x) denotes a non-
negative function over the interval I = [0,∞). We define

L2
w(I) = {v : I → R | v is measurable and ‖ v‖w < ∞}, (4)

where

‖ v‖w = (

∫ ∞

0

| v(x) |2 w(x)dx)
1
2 , (5)

is the norm induced by the scalar product

< u, v >w=

∫ +∞

0

u(x)v(x)w(x)dx. (6)

Let

RN = span
{
1, x, . . . , x2N−2

}
, (7)

Lα
n(x) (generalized Laguerre polynomial) is the nth eigenfunction of the Sturm-

Liouville problem [6],[8],[11]:

x
d2

d2x
Lα

n(x) + (α + 1 − x)
d

dx
Lα

n(x) + nLα
n(x) = 0,

x ∈ I = [0,∞), n = 0, 1, 2, .... (8)

The generalized Laguerre polynomials are defined with the following recurrence
formula:

Lα
0 (x) = 1, Lα

1 (x) = 1 + α − x,

nLα
n(x) = (2n − 1 + α − x)Lα

n−1(x) − (n + α − 1)Lα
n−2(x), n ≥ 2, α > −1,(9)

with the normalizing condition:

Lα
n(0) =

(
n + α

n

)
. (10)
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These are orthogonal polynomials for the weight function wα = xαe−x.

∫ +∞

0

Lα
n(x)Lα

m(x)wα(x)dx =

(
Γ(n + 1 + α)

n!

)
δnm,

Let N ≥ 1 be an integer and we define xα
j,N , j = 0, . . . , N − 1 to be zeroes of

d
dx

Lα
N and the point x = 0. It can be shown that xα

j,N > 0, j = 0, . . . , N − 1
and the corresponding weights are:

wα
0,N = (α+1)Γ2(α+1)(N−1)!

Γ(N+α+1)

wα
j,N = Γ(α+N)

N !

(
Lα

N (xα
j,N) d

dx
Lα

N−1(x
α
j,N )
)−1

, j = 1, 2, ..., N − 1.

The following quadrature formula is known:

∫ +∞

0

f(x)wN(x)dx =

N∑
j=0

f(xα
j,N)wα

j,N

+

(
Γ(N + α + 1)

(N)!(2N)!

)
f 2N−1(ξ), 0 < ξ < ∞ (11)

In particular, the second term on the right hand side vanishes when f is a
polynomial of degree at most 2N − 2. For convenience, we shall set xα

j,N = xj

and wα
j,N = wj. We define

INu(x) =

N∑
j=0

ajL
α
j (x), (12)

such that INu(xj) = u(xj), j = 0, . . . , N . INu is the orthogonal projection of
u upon RN with respect to the discrete inner product and discrete norm as:

< u, v >wα=

N∑
j=0

u(xj)v(xj)wα, (13)

‖ u ‖wα=< u, u >1/2
wα

, (14)

thus for the Gauss-Radau interpolation we have

< INu, v >wα=< u, v >wα, ∀u.v ∈ RN . (15)

In [17] Szegö approximated the zeroes of Lα
n(x) by a procedure.



GLP collocation method for solving Lane-Emden equation 2959

3 Solution of Lane-Emden equation

To apply generalized Laguerre polynomials collocation method to the standard
Lane-Emden Equation introduced in (1) and (2) with boundary conditions (3)
at first by (12) we expand y(x) , as follows:

INy(x) =
N∑

j=0

ajL
1
j (x/k). k > 0. (16)

Which k > 0 is a constant. To find the unknown coefficients aj ’s, we substitute
the truncated series into the (1) with g(y) introduced in (2) and boundary
conditions in (3) and applied (13)-(15). So we have

x

N∑
j=0

ajL
′′
j
1
(x/k) + 2

N∑
j=0

ajL
′
j
1
(x/k) + x

(
N∑

j=0

ajLj
1(x/k)

)m

= 0, (17)

N∑
j=0

ajLj
1(0) = 1,

N∑
j=0

ajL
′
j
1
(0) = 0. (18)

By replacing x in (17) with the N − 1 collocation points which are roots of
functions d

dx
L1

N , we have N−1 equations that generates a set of N+1 nonlinear
equations with boundary equations in (3).

Table 1 shows the comparison of the first zero of y, between Padé approx-
imation used by [3] and the present method for m = 2, 3.

Table 2 shows the approximations of y(x) for standard Lane-Emden with
m = 3 obtained by the method proposed in this paper for N = 6 and k = 1.007,
and those obtained by Horedt [12].

Figure 1 shows the resulting graph of Lane-Emden for N = 6 and specific
k,s shown in table 1.

Table 1. Comparison of the first zero of y, between [3] and the present method for m = 2, 3.
m N k Present method Bender Exact value
2 6 1.098 4.35280120 4.3603 4.35287460
3 6 1.007 6.89201052 7.0521 6.89684862

Table 2. Comparison of y(x) for present method, solutions of Horedt [12] for m = 3
x Present method solutions of Horedt [12]

0.000 1.000000 1.000000
0.100 0.998313 0.998336
0.500 0.959811 0.959839
1.000 0.855084 0.855058
5.000 0.110820 0.110820
6.000 0.043708 0.043738
6.800 0.004155 0.004168
6.896 0.000026 0.000036
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Figure 1: Lane-Emden equation graph obtained by present method .

4 Conclusions

The fundamental goal of this paper has been to construct an approximation
to the solution of nonlinear Lane-Emden equation in a semi-infinite interval
which has singularity at x = 0 . A set of orthoghonl polynomials are proposed
to provide an effective but simple way to improve the convergence of the so-
lution by collocation method. Through the comparisons among the solutions
of Horedt and the approximate solutions of bender and the current work, it
has been shown that the present work has provided more exact soloutions for
Lane-Emden equations.
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