On a Nonlinear System

A. O. Marinho ${ }^{1}$, M. R. Clark 2 and O. A. Lima ${ }^{3}$

Abstract

In this work we will prove that exists only a weak solution the mixed problem associated to the nonlinear system $$
\left\lvert\, \begin{aligned} & u^{\prime \prime}+\Delta^{2} u-M\left(\|u\|^{2}\right) \Delta u+|u|^{\rho} u+\theta=f \\ & \theta^{\prime}-\Delta \theta+u^{\prime}=g \end{aligned}\right.
$$ where M is a real function, ρ is a positive real number, f and g are know real functions.

Mathematical Subject Classification: 74H45

Keywords: Mixed problem; nonlinear system, weak global solutions

1 Introduction

In this work we consider the mixed system

$$
\left\lvert\, \begin{align*}
& u^{\prime \prime}+\Delta^{2} u-M\left(\|u\|^{2}\right) \Delta u+|u|^{\rho} u+\theta=f \quad \text { in } Q \\
& \theta^{\prime}-\Delta \theta+u^{\prime}=g \quad \text { in } \quad Q \\
& u=\frac{\partial u}{\partial \eta}=\theta=0 \quad \text { on } \quad \Sigma \tag{1}\\
& u(x, 0)=u_{0}(x) ; \theta(x, 0)=\theta_{0}(x) \text { and } u^{\prime}(x, 0)=u_{1}(x) \text { in } \Omega,
\end{align*}\right.
$$

where Ω is a non empty open bounded set of \mathbb{R}^{n}, for $n \geq 1$, with boundary Γ smooth, Q is the cylinder $\Omega \times(0, T)$ of \mathbb{R}^{n+1} for $T>0,|\nabla u(x, t)|$ is the norm in \mathbb{R}^{n} of the vector $\nabla(x, t)$ and $\Delta u(x, t)$ is the usual Laplace operator in

[^0]\mathbb{R}^{n} of the function $u(x, t)$. We denote by $\frac{\partial}{\partial t}==^{\prime}, \Sigma=\Gamma \times(0, T)$ is the lateral boundary.
Our goal in this article is to study the existence of global weak solutions of problem (1) with initial conditions $u_{0} \in H_{0}^{2}(\Omega), u_{1}$ and $\theta_{0} \in L^{2}(\Omega)$, and also, the uniqueness of the solutions.
The dynamical part of the above system when $\theta=0$ is a nonlinear perturbation of the beam equation, that has been extensively studied by several authors in different physical-mathematical contexts. Among then, we cite the following related works: Ball [1][2], Biber [3], Brito [4], Pereira [9] and Medeiros [8]. More recently we can cite the works Limaco et al [5], presented in the 56 ${ }^{-}$and $57^{\circ} \mathrm{SBA}$ respectively.

2 Notation and main result

For the functional spaces we shall use, throughout this paper, the standard notation of the functional spaces used, for instance, in the books of Lions [6] or Medeiros-Milla Miranda [7].
In this section we shall assume the following hypothesis:
$M(\lambda)$ is a C^{0} real function satifying

$$
M(\lambda) \geq-\beta, 0<\beta<\lambda_{1}
$$

where λ_{1} is the first auto-value of the Spectral Problem:

$$
\begin{gathered}
(\Delta u, \Delta v)=\lambda((u, v)) \quad \forall v \in H_{0}^{2}(\Omega) . \\
0<\rho \text { if } n=1,2 \text { and } 0<\rho \leq \frac{2}{n-2} \text { if } n \geq 3
\end{gathered}
$$

Definition 2.1 We say that the pair of functions $\{u(x, t), \theta(x, t)\}$ is solution of the problem (1) if

$$
\begin{aligned}
& u \in L^{\infty}\left(0, T ; H_{0}^{2}(\Omega)\right) \\
& u^{\prime} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right)
\end{aligned}
$$

$$
\begin{gathered}
u^{\prime \prime} \in L^{2}\left(0, T ; H^{-2}(\Omega)\right) ; \\
\theta \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) ; \\
\theta^{\prime} \in L^{2}\left(0, T ; H^{-1}(\Omega)\right) ; \\
\frac{d}{d t}\left(u^{\prime}(t), w\right)+\left(\Delta^{2} u(t), w\right)+M\left(\int_{\Omega}|\nabla u(t)|^{2} d x\right)((u(t), w))+ \\
+\left(|u(t)|^{\rho} u(t), w\right)+(\theta(t), w)=(f(t), w) \\
\frac{d}{d t}(\theta(t), w)+((\theta(t), w))+\left(u^{\prime}(t), w\right)=(g(t), w)
\end{gathered}
$$

for all $w \in H_{0}^{2}(\Omega)$ in the sense of $D^{\prime}(0, T)$.

$$
u(0)=u_{0}, u^{\prime}(0)=u_{1}, \theta(0)=\theta_{0}
$$

3 Main Result

The main result of the present work is given in the following theorem.
Theorem 1 Let be $u_{0} \in H_{0}^{2}(\Omega), u_{1}, \theta_{0} \in L^{2}(\Omega)$ and $f, g \in L^{2}\left(0, T ; L^{2}(\Omega)\right)$. Thus there exists only a pair of functions $\{u, \theta\}$ solutions of the problem (1) in the sense of the Definition 2.1.

Proof of Theorem 1. Let $\left(w_{m}\right)_{m \in \mathbb{N}}$ be the eigenfunctions of the biharmonic operator on Ω and let V_{m} be the space generated by the first m eigenfunctions. Now let us consider the approximated system

$$
\begin{gather*}
\left(u_{m}^{\prime \prime}(t), w_{k}\right)+\left(\Delta^{2} u_{m}(t), w_{k}\right)-M\left(\left\|u_{m}(t)\right\|^{2}\right)\left(\Delta u_{m}(t), w_{k}\right) \\
+\left(\left|u_{m}(t)\right|^{\rho} u_{m}(t), w_{k}\right)+\left(\theta_{m}(t), w_{k}\right)=\left(f(t), w_{k}\right) \tag{2}\\
\left(\theta_{m}^{\prime}(t), w_{k}\right)-\left(\Delta \theta_{m}(t), w_{k}\right)+\left(u_{m}^{\prime}(t), w_{k}\right)=\left(g(t), w_{k}\right) \tag{3}\\
u_{m}(0)=u_{0 m} \longrightarrow u_{0} \text { strongly in } H_{0}^{2}(\Omega) \tag{4}\\
u_{m}^{\prime}(0)=u_{1 m} \longrightarrow u_{1} \text { strongly in } L^{2}(\Omega) \tag{5}\\
\theta_{m}(0)=\theta_{0 m} \longrightarrow \theta_{0} \text { strongly in } L^{2}(\Omega) \tag{6}
\end{gather*}
$$

where $1 \leq k \leq m$. Then there exist functions $c_{k m}$ and $d_{k m}$ such that

$$
u_{m}(t)=\sum_{k=1}^{m} c_{k m}(t) w_{k} \text { and } \theta_{m}(t)=\sum_{k=1}^{m} d_{k m}(t) w_{k}
$$

are the unique local solutions of the above system on some interval $\left[0, t_{m}[\right.$, where $t_{m} \in[0, T$.
The estimates that we obtain below will allow us to extend the solutions $\left\{u_{m}, \theta_{m}\right\}$ to the interval $[0, T[$.

Estimate. Multiply (2) by $c_{k m}^{\prime}(t)$ and multiply (3) by $d_{k m}(t)$ and sum over k we obtain:

$$
\begin{gather*}
\frac{1}{2} \frac{d}{d t}\left|u_{m}^{\prime}(t)\right|^{2}+\frac{1}{2} \frac{d}{d t}\left|\Delta u_{m}(t)\right|^{2}+\frac{1}{2} \frac{d}{d t} \hat{M}\left(\left\|u_{m}(t)\right\|^{2}\right)+\frac{1}{p} \frac{d}{d t}\left\|u_{m}(t)\right\|_{L^{p}(\Omega)}^{p} \tag{7}\\
=-\left(\theta_{m}(t), u_{m}^{\prime}(t)\right)+\left(f(t), u_{m}^{\prime}(t)\right)
\end{gather*}
$$

where $p=\rho+2$ and $\hat{M}(\lambda)=\int_{0}^{\lambda} M(s) d s$.

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left\{\left|\theta_{m}(t)\right|^{2}\right\}+\left\|\theta_{m}(t)\right\|^{2}=-\left(u_{m}^{\prime}(t), \theta_{m}(t)\right)+\left(g(t), \theta_{m}(t)\right) \tag{8}
\end{equation*}
$$

Sum (7) and (8)and using the Poincaré's inequality we obtain

$$
\begin{array}{r}
\frac{1}{2} \frac{d}{d t}\left\{\left|u_{m}^{\prime}(t)\right|^{2}+\left|\Delta u_{m}(t)\right|^{2}+\hat{M}\left(\left\|u_{m}(t)\right\|^{2}\right)+\frac{2}{p}\left\|u_{m}(t)\right\|_{L^{p}(\Omega)}^{p}+\left|\theta_{m}(t)\right|^{2}\right\}+\left\|\theta_{m}(t)\right\|^{2} \leq \\
\frac{3}{2}\left|\theta_{m}(t)\right|^{2}+\frac{3}{2}\left|u_{m}^{\prime}(t)\right|^{2}+|f(t)|^{2}+|g(t)|^{2} .
\end{array}
$$

Now integrating from 0 to $t \leq t_{m}$, we have

$$
\begin{gather*}
\frac{1}{2}\left\{\left|u_{m}^{\prime}(t)\right|^{2}+\left|\Delta u_{m}(t)\right|^{2}+\hat{M}\left(\left\|u_{m}(t)\right\|^{2}\right)+\frac{2}{p}\left\|u_{m}(t)\right\|_{L^{p}(\Omega)}^{p}+\left|\theta_{m}(t)\right|^{2}\right\}+ \\
+\int_{0}^{t}\left\|\theta_{m}(s)\right\|^{2} d s \leq \frac{1}{2}\left|u_{1 m}\right|^{2}+\frac{1}{p}\left\|u_{0 m}\right\|^{p}+\left|\Delta u_{0 m}\right|^{2}+\left|\theta_{0 m}\right|^{2}+\hat{M}\left(\left\|u_{0 m}\right\|^{2}\right)+ \\
\frac{3}{2} \int_{0}^{t}\left\{\left|\theta_{m}(s)\right|^{2}+\left|u_{m}^{\prime}(s)\right|^{2}\right\} d s+\int_{0}^{T}\left\{|f(s)|^{2}+|g(s)|^{2}\right\} d s \tag{9}
\end{gather*}
$$

From hypotheses we obtain

$$
\begin{equation*}
\hat{M}\left(\left\|u_{m}(t)\right\|^{2}\right) \geq-\frac{\beta}{\lambda_{1}}\left|\Delta u_{m}(t)\right|^{2} \tag{10}
\end{equation*}
$$

It follows from (9), (10) and from hypothesis

$$
\begin{aligned}
& \left|u_{m}^{\prime}(t)\right|^{2}+\left(1-\frac{\beta}{\lambda_{1}}\right)\left|\Delta u_{m}(t)\right|^{2}+\frac{2}{p}\left\|u_{m}(t)\right\|_{L^{p}(\Omega)}^{p}+\left|\theta_{m}(t)\right|^{2}+ \\
& \quad+\int_{0}^{t}\left\|\theta_{m}(s)\right\|^{2} d s \leq C+3 \int_{0}^{t}\left\{\left|\theta_{m}(t)\right|^{2}+\left|u_{m}^{\prime}(t)\right|^{2}\right\} d s .
\end{aligned}
$$

From Gronwall's inequality it follows that

$$
\begin{equation*}
\left|u_{m}^{\prime}(t)\right|^{2}+\left(1-\frac{\beta}{\lambda_{1}}\right)\left|\Delta u_{m}(t)\right|^{2}+\frac{2}{p}\left\|u_{m}(t)\right\|_{L^{p}(\Omega)}^{p}+\left|\theta_{m}(t)\right|^{2}+\int_{0}^{t}\left\|\theta_{m}(s)\right\|^{2} d s \leq C . \tag{11}
\end{equation*}
$$

where $C>0$ constant independent of t and m.
Being $\left\|u_{m}(t)\right\| \leq C\left|\Delta u_{m}(t)\right|$, we obtain from (11)

$$
\begin{align*}
& \left(u_{m}\right)_{m} \text { is bounded in } L^{\infty}\left(0, T ; H_{0}^{2}(\Omega)\right) ; \tag{12}\\
& \left(u_{m}^{\prime}\right)_{m} \text { is bounded in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right) ; \tag{13}\\
& \left(\left|u_{m}\right|^{\rho} u_{m}\right)_{m} \text { is bounded in } L^{\frac{\rho+2}{\rho+1}}(Q) ; \tag{14}\\
& \left(u_{m}\right)_{m} \text { is bounded in } L^{\infty}\left(0, T ; H_{0}^{1}(\Omega)\right) ; \tag{15}\\
& \left(\theta_{m}\right)_{m} \text { is bounded in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right) ; \tag{16}\\
& \left(\theta_{m}\right)_{m} \text { is bounded in } L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) ; \tag{17}
\end{align*}
$$

Passage to Limit By Estimates above result that there exists subsequence, if necessary, denoted by $\left(u_{m}\right)$ and $\left(\theta_{m}\right)$ and functions $u, \theta: Q \rightarrow \mathbb{R}$ such that:

$$
\begin{align*}
& u_{m} \rightharpoonup u \text { weak-star in } L^{\infty}\left(0, T ; H_{0}^{2}(\Omega)\right) \\
& u_{m}^{\prime} \rightharpoonup u^{\prime} \text { weak-star in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \tag{18}\\
& \theta_{m} \rightharpoonup \theta \text { weak in } L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) .
\end{align*}
$$

From $(18)_{1},(18)_{2}$ and Aubin-Lions's Theorem, it followings that there exists a subsequence of $\left(u_{m}\right)$ such that

$$
u_{m} \rightarrow u \text { strongly in } L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right),
$$

hence

$$
\left\|u_{m}(t)\right\| \rightarrow\|u(t)\| \quad \text { a.e. } \quad \text { in } \quad(0, T)
$$

Consequently

$$
\begin{equation*}
M\left(\left\|u_{m}(t)\right\|^{2}\right) \rightarrow M\left(\|u(t)\|^{2}\right) \quad \text { a.e. in } \quad(0, T) \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|M\left(\left\|u_{m}(t)\right\|^{2}\right)\right|<\infty, \quad \text { a.e. } \quad \text { in } \quad(0, T) \tag{20}
\end{equation*}
$$

From (19),(20) and Lebesgue's Theorem we obtain

$$
\begin{equation*}
M\left(\left\|u_{m}(t)\right\|^{2}\right) \rightarrow M\left(\|u(t)\|^{2}\right) \quad \text { in } \quad L^{2}(0, T) \tag{21}
\end{equation*}
$$

From (18) ${ }_{1}$ and (21) we it followings

$$
\begin{equation*}
M\left(\left\|u_{m}(t)\right\|^{2}\right) \Delta u_{m} \rightharpoonup M\left(\|u(t)\|^{2}\right) \Delta u \quad \text { in } \quad L^{2}\left(0, T ; L^{2}(\Omega)\right) \tag{22}
\end{equation*}
$$

Using Aubin-Lions's Theorem and Lions's Lemma we obtain

$$
\begin{equation*}
\left|u_{m}\right|^{\rho} u_{m} \rightharpoonup|u|^{\rho} u \quad \text { in } \quad L^{\frac{\rho+2}{\rho+1}}(Q) . \tag{23}
\end{equation*}
$$

From convergence (18), (22), (23) and observing that V_{m} is dense in $H_{0}^{2}(\Omega)$ we obtain

$$
\begin{gather*}
\frac{d}{d t}\left(u^{\prime}(t), w\right)+\left(\Delta^{2} u(t), w\right)+M\left(\int_{\Omega}|\nabla u(t)|^{2} d x\right)((u(t), w))+ \\
+\left(|u(t)|^{\rho} u(t), w\right)+(\theta(t), w)=(f(t), w) \tag{24}\\
\frac{d}{d t}(\theta(t), w)+((\theta(t), w))+\left(u^{\prime}(t), w\right)=(g(t), w)
\end{gather*}
$$

for all $w \in H_{0}^{2}(\Omega)$ in the sense of $D^{\prime}(0, T)$.
From (24) and Teman's Theorem [10] we obtain

$$
u^{\prime \prime} \in L^{2}\left(0, T ; H^{-2}(\Omega)\right) \quad \text { and } \quad \theta^{\prime} \in L^{2}\left(0, T ; H^{-1}(\Omega)\right)
$$

4 Uniqueness

To Proof the uniqueness, we increase the hypotheses: M is C^{1} real function and $M(\lambda) \geq 0, \quad \forall \lambda \in \mathbb{R}$.
Let $[u, \theta]$ and $[\hat{u}, \hat{\theta}]$ be solutions of (24) under the conditions of Theorem 1. Let $w=u-\hat{u}$ and $v=\theta-\hat{\theta}$. Then $[w, v]$ satisfies

$$
\begin{align*}
& \frac{d}{d t}\left(w^{\prime}, z\right)+(\Delta w(t), \Delta z)+M\left(\int_{\Omega}|\nabla u|^{2} d x\right)(\nabla w, \nabla z)+\left(|u|^{\rho} u-|\hat{u}|^{\rho} \hat{u}, z\right)+ \\
&+(v, z)= M\left(\int_{\Omega}|\nabla \hat{u}|^{2} d x\right)(\nabla \hat{u}, \nabla z)-M\left(\int_{\Omega}|\nabla u|^{2} d x\right)(\nabla \hat{u}, \nabla z) \tag{25}\\
& \frac{d}{d t}(v, z)+(\nabla v, \nabla z)+\left(w^{\prime}, z\right)=0 \tag{26}\\
& w(0)=0, \quad w^{\prime}(0)=0 \text { and } v(0)=0 \tag{27}
\end{align*}
$$

Taking $z=w^{\prime}$ in (25) and $z=v$ in (26), we obtain

$$
\begin{gather*}
\frac{d}{d t}\left\{\left|w^{\prime}\right|^{2}+\frac{1}{2}|\Delta w|^{2}\right\}+M\left(\int_{\Omega}|\nabla u|^{2} d x\right) \frac{d}{d t}\|w\|^{2}+\int_{\Omega}\left(|u|^{\rho} u-|\hat{u}|^{\rho} \hat{u}\right) w^{\prime} d x \\
+\left(v, w^{\prime}\right)=M\left(\int_{\Omega}|\nabla \hat{u}|^{2} d x\right)\left(\nabla \hat{u}, \nabla w^{\prime}\right)-M\left(\int_{\Omega}|\nabla u|^{2} d x\right)\left(\nabla \hat{u}, \nabla w^{\prime}\right)(2 \tag{28}\\
\frac{d}{d t}|v|^{2}+\|v\|^{2}+\left(w^{\prime}, v\right)=0 \tag{29}
\end{gather*}
$$

in the $D^{\prime}(0, T)$ sense. Adding (28) to (29) we have

$$
\begin{aligned}
& \frac{d}{d t}\left\{\left|w^{\prime}\right|^{2}+|v|^{2}+\frac{1}{2}|\Delta w|^{2}\right\}+M\left(\int_{\Omega}|\nabla u|^{2} d x\right) \frac{d}{d t}\|w\|^{2}+\|v\|^{2} \\
&= \int_{\Omega}\left(|\hat{u}|^{\rho} \hat{u}-|u|^{\rho} u\right) w^{\prime} d x-2\left(v, w^{\prime}\right)+M\left(\int_{\Omega}|\nabla \hat{u}|^{2} d x\right)\left(\nabla \hat{u}, \nabla w^{\prime}\right) \\
&-M\left(\int_{\Omega}|\nabla u|^{2} d x\right)\left(\nabla \hat{u}, \nabla w^{\prime}\right) \\
& \leq\left|\int_{\Omega}\left(|\hat{u}|^{\rho} \hat{u}-|u|^{\rho} u\right) w^{\prime} d x\right|+2\left|\left(v, w^{\prime}\right)\right| \\
&+\left|M\left(\int_{\Omega}|\nabla \hat{u}|^{2} d x\right)-M\left(\int_{\Omega}|\nabla u|^{2} d x\right)\right|\left|\left(\nabla \hat{u}, \nabla w^{\prime}\right)\right|
\end{aligned}
$$

On the other hand, by Holder's inequality with $\frac{1}{q}+\frac{1}{n}+\frac{1}{2}=1$, we have

$$
\begin{aligned}
\left|\int_{\Omega}\left(|\hat{u}|^{\rho} \hat{u}-|u|^{\rho} u\right) w^{\prime} d x\right| & \leq(\rho+1) \int_{\Omega} \sup \left(|u|^{\rho},|\hat{u}|^{\rho}\right)|w|\left|w^{\prime}\right| d x \\
& \leq C\left(\left\||u|^{\rho}\right\|_{L^{n}(\Omega)}+\left\||\hat{u}|^{\rho}\right\|_{L^{n}(\Omega)}\right)\|w\|_{L^{q}(\Omega)}\left|w^{\prime}\right|_{L^{2}(\Omega)}
\end{aligned}
$$

By hypotheses, we have $\rho n \leq q$ and from the immersion $H_{0}^{1}(\Omega) \hookrightarrow L^{q}(\Omega)$ with $1 / q=1 / 2-1 / n$, we have

$$
\left|\int_{\Omega}\left(|\hat{u}|^{\rho} \hat{u}-|u|^{\rho} u\right) w^{\prime} d x\right| \leq C\left(\|u\|^{\rho}+\|\hat{u}\|^{\rho}\right)\|w\|\left|w^{\prime}\right|
$$

and since $u, \hat{u} \in L^{\infty}\left(0, T ; H_{0}^{2}(\Omega)\right)$, we have

$$
\begin{align*}
\left|\int_{\Omega}\left(|\hat{u}|^{\rho} \hat{u}-|u|^{\rho} u\right) w^{\prime} d x\right| & \leq C\|w\|\left|w^{\prime}\right| \tag{30}\\
2\left|\left(v, w^{\prime}\right)\right| & \leq 2|v|\left|w^{\prime}\right| \tag{31}
\end{align*}
$$

Observe that

$$
\begin{aligned}
& \left|M\left(\int_{\Omega}|\nabla \hat{u}|^{2} d x\right)-M\left(\int_{\Omega}|\nabla u|^{2} d x\right)\right|\left|\left(\nabla \hat{u}, \nabla w^{\prime}\right)\right| \\
& \leq\left.\left|M^{\prime}(\xi)\right|| | \nabla \hat{u}\right|^{2}-|\nabla u|^{2}| |(-\Delta) \hat{u}| | w^{\prime} \mid
\end{aligned}
$$

where ξ is between $|\nabla \hat{u}|^{2}$ and $|\nabla u|^{2}$. Then we have

$$
\begin{align*}
& \left|M\left(\int_{\Omega}|\nabla \hat{u}|^{2} d x\right)-M\left(\int_{\Omega}|\nabla u|^{2} d x\right)\right|\left|\left(\nabla \hat{u}, \nabla w^{\prime}\right)\right| \\
& \quad \leq C| | \nabla \hat{u}|+|\nabla u||| | \nabla \hat{u}|-|\nabla u|||(-\Delta) \hat{u}|\left|w^{\prime}\right| \tag{32}\\
& \quad \leq C\|\hat{u}-u\||(-\Delta) \hat{u}|\left|w^{\prime}\right| \\
& \leq C\|w\|\left|w^{\prime}\right|
\end{align*}
$$

Substituting (30)-(32) in (28) and noting that

$$
\begin{aligned}
& M\left(\int_{\Omega}|\nabla u|^{2} d x\right) \frac{d}{d t}|\nabla w|^{2} \\
& \quad=\frac{d}{d t}\left(M\left(\int_{\Omega}|\nabla u|^{2} d x\right)|\nabla w|^{2}\right)-\left[\frac{d}{d t} M\left(\int_{\Omega}|\nabla u|^{2} d x\right)\right]|\nabla w|^{2}
\end{aligned}
$$

we obtain:

$$
\begin{align*}
& \frac{d}{d t}\left\{\left|w^{\prime}\right|^{2}+|v|^{2}+\frac{1}{2}|\Delta w|^{2}+M\left(\int_{\Omega}|\nabla u|^{2} d x\right)|\nabla w|^{2}\right\}+\|v\|^{2} \\
& \quad \leq|v|^{2}+C\left|w^{\prime}\right|^{2}+C\|w\|^{2}+\left|\frac{d}{d t} M\left(\int_{\Omega}|\nabla u|^{2} d x\right)\right||\nabla w|^{2} \tag{33}\\
& \quad \leq C\left\{|v|^{2}+\left|w^{\prime}\right|^{2}+\|w\|^{2}\right\} \leq C\left\{|v|^{2}+\left|w^{\prime}\right|^{2}+|\Delta w|^{2}\right\}
\end{align*}
$$

Integrating (33) from 0 to $t \leq T$ and using the hypotheses on M we have

$$
\begin{aligned}
& \left|w^{\prime}(t)\right|^{2}+|v(t)|^{2}+\frac{1}{2}|\Delta w(t)|^{2}+\int_{0}^{T}\|v(s)\|^{2} d s \\
& \quad \leq C \int_{0}^{t}\left\{|v(s)|^{2}+\left|w^{\prime}(s)\right|^{2}+|\Delta w(s)|^{2}\right\} d s
\end{aligned}
$$

By Gronwall's Lemma it follows that

$$
|v(s)|^{2}+\left|w^{\prime}(s)\right|^{2}+|\Delta w(s)|^{2} \leq 0
$$

This implies that $v(t)=w(t)=0 \forall t \in[0, T]$. Or $u(t)=\hat{u}(t)$ and $\theta(t)=$ $\hat{\theta}(t) \forall t \in[0, T]$. This concludes the proof of uniqueness.

References

[1] Ball, J.M.-Initial boundary value problems for an extensible beam, J. Math. Analysis and Applications, 42, (1973), pp. $66-90$.
[2] Ball, J.M.- Stability theory for an extensible beam, J. Diff. Equations, 14, (1973), pp. 399-418.
[3] Biber, P.- Remark on the decay for damped string and beam equation, NonLinear Analysis, TMA 10, (1986), pp. 839-842.
[4] Brito, E.H.- Decay Stimates for generalized damped extensible string and beam equation, Nonlinear Analysis, TMA 8, (1984), pp. 1489-1496.
[5] Limaco, J., Clark, H.R., Feitosa A.J.- Biharmpnic evolutions equation with variable coeficients, $56^{\circ} \mathrm{SBA}$, pp. 539-547.
[6] Lions, J.L.- Quelques Méhodes de Résolution des Problémes aux Limites Non Linéaires. Dunod, Paris, 1969(Nouvelle Présentation Dunod 2002.
[7] Medeiros, L.A., Milla Miranda- Intr. aos Esp. de Sobolev, Editora da UFRJ, IM-UFRJ, 1989.
[8] Medeiros L.A.-Semilinear wave equations, Partial differential equations and related topics, lectures notes in Mathematics 446(1975), pp. 229-254, Springer-Verlag.
[9] Pereira, D.C.- Existence, uniqueness and asymptotic behavior for solutions of the nonlinear beam equation, Nonlinear Analysis, 8, (1990), pp. 613-623.
[10] R. Temam, Navier-Stokes Equations, North-Holland, 1979, p. 250.
Received: February 7, 2008

[^0]: ${ }^{1}$ UFPI-DM-CMRV-Supported Partially by Cnpq-UFRJ-Brasil, alexmaiver@hotmail.com
 ${ }^{2}$ UFPI-DM, Teresina-Pi-Brazil, mclark@ufpi.br
 ${ }^{3}$ UEPB, DME, C. Grande -PB-Brazil, osmundo@hs24.com.br

