On a Nonlinear System

A. O. Marinho¹, M. R. Clark² and O. A. Lima³

Abstract

In this work we will prove that exists only a weak solution the mixed problem associated to the nonlinear system

$$\begin{vmatrix} u'' + \Delta^2 u - M(\|u\|^2)\Delta u + |u|^\rho u + \theta = f \\ \theta' - \Delta \theta + u' = g, \end{vmatrix}$$

where M is a real function, ρ is a positive real number, f and g are know real functions.

Mathematical Subject Classification: 74H45

Keywords: Mixed problem; nonlinear system, weak global solutions

1 Introduction

In this work we consider the mixed system

$$\begin{vmatrix} u'' + \Delta^2 u - M(\|u\|^2)\Delta u + |u|^\rho u + \theta = f & \text{in } Q \\ \theta' - \Delta \theta + u' = g & \text{in } Q \\ u = \frac{\partial u}{\partial \eta} = \theta = 0 & \text{on } \Sigma \\ u(x,0) = u_0(x); \ \theta(x,0) = \theta_0(x) \text{ and } u'(x,0) = u_1(x) \text{ in } \Omega, \end{cases}$$

$$(1)$$

where Ω is a non empty open bounded set of \mathbb{R}^n , for $n \geq 1$, with boundary Γ smooth, Q is the cylinder $\Omega \times (0,T)$ of \mathbb{R}^{n+1} for T > 0, $|\nabla u(x,t)|$ is the norm in \mathbb{R}^n of the vector $\nabla(x,t)$ and $\Delta u(x,t)$ is the usual Laplace operator in

 $^{^1 \}hbox{UFPI-DM-CMRV-Supported Partially by Cnpq-UFRJ-Brasil, alexmaiver@hotmail.com}$

²UFPI-DM, Teresina-Pi-Brazil, mclark@ufpi.br

³UEPB, DME, C. Grande -PB-Brazil, osmundo@hs24.com.br

 \mathbb{R}^n of the function u(x,t). We denote by $\frac{\partial}{\partial t} = ', \ \Sigma = \Gamma \times (0,T)$ is the lateral boundary.

Our goal in this article is to study the existence of global weak solutions of problem (1) with initial conditions $u_0 \in H_0^2(\Omega)$, u_1 and $\theta_0 \in L^2(\Omega)$, and also, the uniqueness of the solutions.

The dynamical part of the above system when $\theta = 0$ is a nonlinear perturbation of the beam equation, that has been extensively studied by several authors in different physical-mathematical contexts. Among then, we cite the following related works: Ball [1][2], Biber [3], Brito [4], Pereira [9] and Medeiros [8]. More recently we can cite the works Limaco et al [5], presented in the 56° and 57° SBA respectively.

2 Notation and main result

For the functional spaces we shall use, throughout this paper, the standard notation of the functional spaces used, for instance, in the books of Lions [6] or Medeiros-Milla Miranda [7].

In this section we shall assume the following hypothesis: $M(\lambda)$ is a C^0 real function satisfying

$$M(\lambda) \ge -\beta, 0 < \beta < \lambda_1,$$

where λ_1 is the first auto-value of the Spectral Problem:

$$(\Delta u, \Delta v) = \lambda ((u, v)) \quad \forall \quad v \in H_0^2(\Omega).$$

$$0 < \rho \text{ if } n = 1, 2 \text{ and } 0 < \rho \le \frac{2}{n-2} \text{ if } n \ge 3.$$

Definition 2.1 We say that the pair of functions $\{u(x,t),\theta(x,t)\}$ is solution of the problem (1) if

$$u \in L^{\infty}(0, T; H_0^2(\Omega));$$

$$u' \in L^{\infty}(0, T; L^2(\Omega));$$

$$u'' \in L^2(0, T; H^{-2}(\Omega));$$

$$\theta \in L^2(0, T; H_0^1(\Omega));$$

$$\theta' \in L^2(0, T; H^{-1}(\Omega));$$

$$\frac{d}{dt}(u'(t), w) + (\Delta^2 u(t), w) + M(\int_{\Omega} |\nabla u(t)|^2 dx) ((u(t), w)) + (|u(t)|^\rho u(t), w) + (\theta(t), w) = (f(t), w)$$

$$\frac{d}{dt}(\theta(t), w) + ((\theta(t), w)) + (u'(t), w) = (g(t), w)$$

for all $w \in H_0^2(\Omega)$ in the sense of D'(0,T).

$$u(0) = u_0, \ u'(0) = u_1, \ \theta(0) = \theta_0$$

3 Main Result

The main result of the present work is given in the following theorem.

Theorem 1 Let be $u_0 \in H_0^2(\Omega)$, u_1 , $\theta_0 \in L^2(\Omega)$ and $f, g \in L^2(0, T; L^2(\Omega))$. Thus there exists only a pair of functions $\{u, \theta\}$ solutions of the problem (1) in the sense of the Definition 2.1.

Proof of Theorem 1. Let $(w_m)_{m\in\mathbb{N}}$ be the eigenfunctions of the biharmonic operator on Ω and let V_m be the space generated by the first m eigenfunctions. Now let us consider the approximated system

$$(u''_m(t), w_k) + (\Delta^2 u_m(t), w_k) - M(\|u_m(t)\|^2)(\Delta u_m(t), w_k)$$
$$+(|u_m(t)|^\rho u_m(t), w_k) + (\theta_m(t), w_k) = (f(t), w_k)$$
(2)

$$(\theta'_m(t), w_k) - (\Delta \theta_m(t), w_k) + (u'_m(t), w_k) = (g(t), w_k)$$
(3)

$$u_m(0) = u_{0m} \longrightarrow u_0 \text{ strongly in } H_0^2(\Omega)$$
 (4)

$$u'_m(0) = u_{1m} \longrightarrow u_1 \text{ strongly in } L^2(\Omega)$$
 (5)

$$\theta_m(0) = \theta_{0m} \longrightarrow \theta_0 \text{ strongly in } L^2(\Omega)$$
 (6)

where $1 \leq k \leq m$. Then there exist functions c_{km} and d_{km} such that

$$u_m(t) = \sum_{k=1}^{m} c_{km}(t)w_k$$
 and $\theta_m(t) = \sum_{k=1}^{m} d_{km}(t)w_k$

are the unique local solutions of the above system on some interval $[0, t_m[$, where $t_m \in [0, T[$.

The estimates that we obtain below will allow us to extend the solutions $\{u_m, \theta_m\}$ to the interval [0, T[.

Estimate. Multiply (2) by $c'_{km}(t)$ and multiply (3) by $d_{km}(t)$ and sum over k we obtain:

$$\frac{1}{2}\frac{d}{dt}|u'_m(t)|^2 + \frac{1}{2}\frac{d}{dt}|\Delta u_m(t)|^2 + \frac{1}{2}\frac{d}{dt}\hat{M}(\|u_m(t)\|^2) + \frac{1}{p}\frac{d}{dt}\|u_m(t)\|_{L^p(\Omega)}^p \\
= -(\theta_m(t), u'_m(t)) + (f(t), u'_m(t))$$
(7)

where $p = \rho + 2$ and $\hat{M}(\lambda) = \int_0^{\lambda} M(s) ds$.

$$\frac{1}{2}\frac{d}{dt}\{|\theta_m(t)|^2\} + \|\theta_m(t)\|^2 = -(u'_m(t), \theta_m(t)) + (g(t), \theta_m(t))$$
 (8)

Sum (7) and (8) and using the Poincaré's inequality we obtain

$$\frac{1}{2} \frac{d}{dt} \left\{ |u'_m(t)|^2 + |\Delta u_m(t)|^2 + \hat{M}(\|u_m(t)\|^2) + \frac{2}{p} \|u_m(t)\|_{L^p(\Omega)}^p + |\theta_m(t)|^2 \right\} + \|\theta_m(t)\|^2 \le \frac{3}{2} |\theta_m(t)|^2 + \frac{3}{2} |u'_m(t)|^2 + |f(t)|^2 + |g(t)|^2.$$

Now integrating from 0 to $t \leq t_m$, we have

$$\frac{1}{2} \left\{ |u'_{m}(t)|^{2} + |\Delta u_{m}(t)|^{2} + \hat{M}(\|u_{m}(t)\|^{2}) + \frac{2}{p} \|u_{m}(t)\|_{L^{p}(\Omega)}^{p} + |\theta_{m}(t)|^{2} \right\} + \int_{0}^{t} \|\theta_{m}(s)\|^{2} ds \leq \frac{1}{2} |u_{1m}|^{2} + \frac{1}{p} \|u_{0m}\|^{p} + |\Delta u_{0m}|^{2} + |\theta_{0m}|^{2} + \hat{M}(\|u_{0m}\|^{2}) + \frac{3}{2} \int_{0}^{t} \left\{ |\theta_{m}(s)|^{2} + |u'_{m}(s)|^{2} \right\} ds + \int_{0}^{T} \left\{ |f(s)|^{2} + |g(s)|^{2} \right\} ds. \tag{9}$$

From hypotheses we obtain

$$\hat{M}(\|u_m(t)\|^2) \ge -\frac{\beta}{\lambda_1} |\Delta u_m(t)|^2. \tag{10}$$

It follows from (9), (10) and from hypothesis

$$|u'_{m}(t)|^{2} + \left(1 - \frac{\beta}{\lambda_{1}}\right)|\Delta u_{m}(t)|^{2} + \frac{2}{p}||u_{m}(t)||_{L^{p}(\Omega)}^{p} + |\theta_{m}(t)|^{2} + \int_{0}^{t} ||\theta_{m}(s)||^{2} ds \leq C + 3\int_{0}^{t} \left\{ |\theta_{m}(t)|^{2} + |u'_{m}(t)|^{2} \right\} ds.$$

From Gronwall's inequality it follows that

$$|u'_{m}(t)|^{2} + \left(1 - \frac{\beta}{\lambda_{1}}\right)|\Delta u_{m}(t)|^{2} + \frac{2}{p}||u_{m}(t)||_{L^{p}(\Omega)}^{p} + |\theta_{m}(t)|^{2} + \int_{0}^{t} ||\theta_{m}(s)||^{2} ds \le C.$$

$$(11)$$

where C > 0 constant independent of t and m.

Being $||u_m(t)|| \le C|\Delta u_m(t)|$, we obtain from (11)

$$(u_m)_m$$
 is bounded in $L^{\infty}(0,T;H_0^2(\Omega));$ (12)

$$(u'_m)_m$$
 is bounded in $L^{\infty}(0,T;L^2(\Omega));$ (13)

$$(|u_m|^{\rho}u_m)_m$$
 is bounded in $L^{\frac{\rho+2}{\rho+1}}(Q)$; (14)

$$(u_m)_m$$
 is bounded in $L^{\infty}(0,T;H_0^1(\Omega));$ (15)

$$(\theta_m)_m$$
 is bounded in $L^{\infty}(0,T;L^2(\Omega));$ (16)

$$(\theta_m)_m$$
 is bounded in $L^2(0,T;H_0^1(\Omega));$ (17)

Passage to Limit By Estimates above result that there exists subsequence, if necessary, denoted by (u_m) and (θ_m) and functions $u, \theta : Q \to \mathbb{R}$ such that:

$$u_m \rightharpoonup u$$
 weak-star in $L^{\infty}(0, T; H_0^2(\Omega))$
 $u'_m \rightharpoonup u'$ weak-star in $L^{\infty}(0, T; L^2(\Omega))$ (18)
 $\theta_m \rightharpoonup \theta$ weak in $L^2(0, T; H_0^1(\Omega))$.

From $(18)_1$, $(18)_2$ and Aubin-Lions's Theorem, it followings that there exists a subsequence of (u_m) such that

$$u_m \to u$$
 strongly in $L^2(0,T; H_0^1(\Omega)),$

hence

$$||u_m(t)|| \to ||u(t)||$$
 a.e. in $(0,T)$.

Consequently

$$M(\|u_m(t)\|^2) \to M(\|u(t)\|^2)$$
 a.e. $in (0,T)$ (19)

and

$$|M(||u_m(t)||^2)| < \infty$$
, a.e. $in (0,T)$. (20)

From (19),(20) and Lebesgue's Theorem we obtain

$$M(\|u_m(t)\|^2) \to M(\|u(t)\|^2)$$
 in $L^2(0,T)$. (21)

From $(18)_1$ and (21) we it followings

$$M(\|u_m(t)\|^2)\Delta u_m \rightharpoonup M(\|u(t)\|^2)\Delta u$$
 in $L^2(0,T;L^2(\Omega))$. (22)

Using Aubin-Lions's Theorem and Lions's Lemma we obtain

$$|u_m|^{\rho}u_m \rightharpoonup |u|^{\rho}u \quad \text{in} \quad L^{\frac{\rho+2}{\rho+1}}(Q).$$
 (23)

From convergence (18), (22), (23) and observing that V_m is dense in $H_0^2(\Omega)$ we obtain

$$\frac{d}{dt}(u'(t), w) + (\Delta^{2}u(t), w) + M(\int_{\Omega} |\nabla u(t)|^{2} dx) ((u(t), w)) + (|u(t)|^{\rho} u(t), w) + (\theta(t), w) = (f(t), w)
\frac{d}{dt}(\theta(t), w) + ((\theta(t), w)) + (u'(t), w) = (g(t), w)$$
(24)

for all $w \in H_0^2(\Omega)$ in the sense of D'(0,T).

From (24) and Teman's Theorem [10] we obtain

$$u'' \in L^2(0, T; H^{-2}(\Omega))$$
 and $\theta' \in L^2(0, T; H^{-1}(\Omega))$.

4 Uniqueness

To Proof the uniqueness, we increase the hypotheses: M is C^1 real function and $M(\lambda) \geq 0$, $\forall \lambda \in \mathbb{R}$.

Let $[u, \theta]$ and $[\hat{u}, \hat{\theta}]$ be solutions of (24) under the conditions of Theorem 1. Let $w = u - \hat{u}$ and $v = \theta - \hat{\theta}$. Then [w, v] satisfies

$$\frac{d}{dt}(w',z) + (\Delta w(t), \Delta z) + M(\int_{\Omega} |\nabla u|^2 dx)(\nabla w, \nabla z) + (|u|^{\rho} u - |\hat{u}|^{\rho} \hat{u}, z) +
+ (v,z) = M(\int_{\Omega} |\nabla \hat{u}|^2 dx)(\nabla \hat{u}, \nabla z) - M(\int_{\Omega} |\nabla u|^2 dx)(\nabla \hat{u}, \nabla z) \quad (25)
\frac{d}{dt}(v,z) + (\nabla v, \nabla z) + (w',z) = 0
w(0) = 0, \quad w'(0) = 0 \text{ and } v(0) = 0$$
(26)

Taking z = w' in (25) and z = v in (26), we obtain

$$\frac{d}{dt} \{ |w'|^2 + \frac{1}{2} |\Delta w|^2 \} + M(\int_{\Omega} |\nabla u|^2 dx) \frac{d}{dt} ||w||^2 + \int_{\Omega} (|u|^{\rho} u - |\hat{u}|^{\rho} \hat{u}) w' dx
+ (v, w') = M(\int_{\Omega} |\nabla \hat{u}|^2 dx) (\nabla \hat{u}, \nabla w') - M(\int_{\Omega} |\nabla u|^2 dx) (\nabla \hat{u}, \nabla w') (28)
\frac{d}{dt} |v|^2 + ||v||^2 + (w', v) = 0$$
(29)

in the D'(0,T) sense. Adding (28) to (29) we have

$$\begin{split} \frac{d}{dt} \left\{ |w'|^2 + |v|^2 + \frac{1}{2} |\Delta w|^2 \right\} + M(\int_{\Omega} |\nabla u|^2 dx) \frac{d}{dt} ||w||^2 + ||v||^2 \\ &= \int_{\Omega} (|\hat{u}|^\rho \hat{u} - |u|^\rho u) w' dx - 2(v, w') + M(\int_{\Omega} |\nabla \hat{u}|^2 dx) (\nabla \hat{u}, \nabla w') \\ &- M(\int_{\Omega} |\nabla u|^2 dx) (\nabla \hat{u}, \nabla w') \\ &\leq \left| \int_{\Omega} (|\hat{u}|^\rho \hat{u} - |u|^\rho u) w' dx \right| + 2|(v, w')| \\ &+ \left| M(\int_{\Omega} |\nabla \hat{u}|^2 dx) - M(\int_{\Omega} |\nabla u|^2 dx) \right| |(\nabla \hat{u}, \nabla w')| \end{split}$$

On the other hand, by Holder's inequality with $\frac{1}{q} + \frac{1}{n} + \frac{1}{2} = 1$, we have

$$\left| \int_{\Omega} (|\hat{u}|^{\rho} \hat{u} - |u|^{\rho} u) w' dx \right| \leq (\rho + 1) \int_{\Omega} \sup(|u|^{\rho}, |\hat{u}|^{\rho}) |w| |w'| dx$$

$$\leq C \left(||u|^{\rho}||_{L^{n}(\Omega)} + ||\hat{u}|^{\rho}||_{L^{n}(\Omega)} \right) ||w||_{L^{q}(\Omega)} |w'|_{L^{2}(\Omega)}$$

By hypotheses, we have $\rho n \leq q$ and from the immersion $H_0^1(\Omega) \hookrightarrow L^q(\Omega)$ with 1/q = 1/2 - 1/n, we have

$$\left| \int_{\Omega} (|\hat{u}|^{\rho} \hat{u} - |u|^{\rho} u) w' dx \right| \le C(\|u\|^{\rho} + \|\hat{u}\|^{\rho}) \|w\| |w'|$$

and since $u, \hat{u} \in L^{\infty}(0, T; H_0^2(\Omega))$, we have

$$\left| \int_{\Omega} (|\hat{u}|^{\rho} \hat{u} - |u|^{\rho} u) w' dx \right| \leq C \|w\| |w'| \tag{30}$$

$$2|(v, w')| \le 2|v||w'| \tag{31}$$

Observe that

$$\left| M(\int_{\Omega} |\nabla \hat{u}|^2 dx) - M(\int_{\Omega} |\nabla u|^2 dx) \right| |(\nabla \hat{u}, \nabla w')|$$

$$\leq |M'(\xi)| \left| |\nabla \hat{u}|^2 - |\nabla u|^2 \right| |(-\Delta)\hat{u}| |w'|$$

where ξ is between $|\nabla \hat{u}|^2$ and $|\nabla u|^2$. Then we have

$$\left| M(\int_{\Omega} |\nabla \hat{u}|^{2} dx) - M(\int_{\Omega} |\nabla u|^{2} dx) \right| |(\nabla \hat{u}, \nabla w')|$$

$$\leq C ||\nabla \hat{u}| + |\nabla u|| ||\nabla \hat{u}| - |\nabla u|| ||(-\Delta)\hat{u}| |w'|$$

$$\leq C ||\hat{u} - u|| |(-\Delta)\hat{u}| |w'|$$

$$\leq C ||w|| |w'|$$
(32)

Substituting (30)–(32) in (28) and noting that

$$M(\int_{\Omega} |\nabla u|^2 dx) \frac{d}{dt} |\nabla w|^2$$

$$= \frac{d}{dt} \left(M(\int_{\Omega} |\nabla u|^2 dx) |\nabla w|^2 \right) - \left[\frac{d}{dt} M(\int_{\Omega} |\nabla u|^2 dx) \right] |\nabla w|^2$$

we obtain:

$$\frac{d}{dt} \left\{ |w'|^2 + |v|^2 + \frac{1}{2} |\Delta w|^2 + M(\int_{\Omega} |\nabla u|^2 dx) |\nabla w|^2 \right\} + ||v||^2
\leq |v|^2 + C|w'|^2 + C||w||^2 + \left| \frac{d}{dt} M(\int_{\Omega} |\nabla u|^2 dx) \right| |\nabla w|^2
\leq C \left\{ |v|^2 + |w'|^2 + ||w||^2 \right\} \leq C \left\{ |v|^2 + |w'|^2 + |\Delta w|^2 \right\}$$
(33)

Integrating (33) from 0 to $t \leq T$ and using the hypotheses on M we have

$$|w'(t)|^{2} + |v(t)|^{2} + \frac{1}{2}|\Delta w(t)|^{2} + \int_{0}^{T} ||v(s)||^{2} ds$$

$$\leq C \int_{0}^{t} \{|v(s)|^{2} + |w'(s)|^{2} + |\Delta w(s)|^{2}\} ds$$

By Gronwall's Lemma it follows that

$$|v(s)|^2 + |w'(s)|^2 + |\Delta w(s)|^2 \le 0$$
.

This implies that $v(t) = w(t) = 0 \ \forall t \in [0, T]$. Or $u(t) = \hat{u}(t)$ and $\theta(t) = \hat{\theta}(t) \ \forall t \in [0, T]$. This concludes the proof of uniqueness.

References

- [1] Ball, J.M.-Initial boundary value problems for an extensible beam, J. Math. Analysis and Applications, 42, (1973), pp. 66 90.
- [2] Ball, J.M.- Stability theory for an extensible beam, J. Diff. Equations, 14, (1973), pp. 399-418.
- [3] Biber, P.- Remark on the decay for damped string and beam equation, NonLinear Analysis, TMA 10, (1986), pp. 839-842.
- [4] Brito, E.H.- Decay Stimates for generalized damped extensible string and beam equation, Nonlinear Analysis, TMA 8, (1984), pp. 1489-1496.
- [5] Limaco, J., Clark, H.R., Feitosa A.J.- Biharmpnic evolutions equation with variable coeficients, 56^o SBA, pp. 539-547.
- [6] Lions, J.L.- Quelques Méhodes de Résolution des Problémes aux Limites Non Linéaires. Dunod, Paris, 1969(Nouvelle Présentation Dunod 2002.
- [7] Medeiros, L.A., Milla Miranda- Intr. aos Esp. de Sobolev, Editora da UFRJ, IM-UFRJ, 1989.
- [8] Medeiros L.A.-Semilinear wave equations, Partial differential equations and related topics, lectures notes in Mathematics 446(1975), pp. 229-254, Springer-Verlag.

- [9] Pereira, D.C.- Existence, uniqueness and asymptotic behavior for solutions of the nonlinear beam equation, Nonlinear Analysis, 8, (1990), pp. 613-623.
- [10] R. Temam, Navier-Stokes Equations, North-Holland, 1979, p. 250.

Received: February 7, 2008