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On a Nonlinear System

A. O. Marinho!, M. R. Clark? and O. A. Lima3

Abstract

In this work we will prove that exists only a weak solution the mixed

problem associated to the nonlinear system

u” + A% — M(||u)|®)Au + |ulfu+6 = f
0 — A0 +u =g,

where M is a real function, p is a positive real number, f and g are

know real functions.
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1 Introduction

In this work we consider the mixed system

" + A%u— M(||ul|H)Au + |ulffu+60=f in Q
0 —A0+u =g in Q

u(z,0) = ug(x); 6(z,0) =0Oy(x) and u/'(z,0) =ui(x) in €,

where 2 is a non empty open bounded set of R”, for n > 1, with boundary
[ smooth, @ is the cylinder Q2 x (0,7) of R*™! for T' > 0, |Vu(z,t)| is the

norm in R™ of the vector V(z,t) and Au(zx,t) is the usual Laplace operator in
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R™ of the function u(z,t). We denote by % =, 3 =T x(0,T) is the lateral
boundary.

Our goal in this article is to study the existence of global weak solutions of
problem (1) with initial conditions ug € HZ(S2), u; and 6y € L?(Q), and also,
the uniqueness of the solutions.

The dynamical part of the above system when 6 = 0 is a nonlinear perturbation
of the beam equation, that has been extensively studied by several authors in
different physical-mathematical contexts. Among then, we cite the following
related works: Ball [1][2], Biber [3], Brito [4], Pereira [9] and Medeiros [8].
More recently we can cite the works Limaco et al [5], presented in the 562 and
572 SBA respectively.

2 Notation and main result

For the functional spaces we shall use, throughout this paper, the standard
notation of the functional spaces used, for instance, in the books of Lions [6]
or Medeiros-Milla Miranda [7].

In this section we shall assume the following hypothesis:

M()) is a C° real function satifying
M()\) Z _670 < B < )\17
where A; is the first auto-value of the Spectral Problem:

(Au, Av) = A((u,v)) ¥V v e HF(Q).

2 ifn>3
iftn .
n—2 -

O<pifn=1,2and 0 < p <

Definition 2.1 We say that the pair of functions {u(z,t),0(x,t)} is solution
of the problem (1) if

u e L>(0,T; Hy(2));

u € L>(0,T; LQ(Q));
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W€ L0, T; H3(Q));
0 € L*(0,T; Hy(S));
0' € L*(0,T; H(Q));
S0, 0)+ (A%u(t).w) + M( [ [Fu(0)d) (a0 )+

dt
+H(u(®)Pu(t), w) + (0(1), w) = (f(£), w)
(0(t), w) + ((0(1), w)) + (u'(t), w) = (g(t), w)

for all w € HZ(Q) in the sense of D'(0,T).

a
dt

u(0) = ug, u'(0) =uq, 6(0) =6

3 Main Result

The main result of the present work is given in the following theorem.

Theorem 1 Let be ug € HZ(Q), uy, 0y € L*(Q) and f,g € L*(0,T; L*()).
Thus there exists only a pair of functions {u,0} solutions of the problem (1)
in the sense of the Definition 2.1.

Proof of Theorem 1. Let (w,,)men be the eigenfunctions of the biharmonic
operator on {2 and let V,,, be the space generated by the first m eigenfunctions.

Now let us consider the approximated system

(v (£), i) + (A%t (), wie) — M ([ (8) ) (At (£), wi)

)P (1), w5) + (Bon(1), ) = (F(0), ) @)
(61, (6), we) — (AB(t), i) + (a8, wi) = (a(8), ) 3)
U (0) = ugy — ug strongly in HZ(Q) (4)

u! (0) = uy, — u; strongly in L?(Q) (5)

0,,(0) = bg,, — 6 strongly in L*(Q) (6)
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where 1 < k < m. Then there exist functions ¢z, and dp,, such that

Z Crem (t)wy and 6, Z djem (1)

k=1

are the unique local solutions of the above system on some interval [0, ],
where t,,, € [0,T7.

The estimates that we obtain below will allow us to extend the solutions
{tm, 0} to the interval [0, 7.

Estimate. Multiply (2) by ¢,,(t) and multiply (3) by d,(t) and sum over

k we obtain:

1d
2dt

, 1d 1d )
th\Aum(t)l + 52 M (|| (1) )+ gltm Ol )

= — (O (), (£)) + (f (1), 1, (1))

-l (D +

A
where p = p + 2 and M(/\):/ M(s) ds
0

th{\e OF} + 10m (O = = (1w, (), 0m () + (9(2), O (1)) (8)

Sum (7) and (8)and using the Poincaré’s inequality we obtain

() + 1A (6)* + M ([lum(®)]%) + ]—DH U () [y + 10m (8} + 10, (B)]]* <

om0 + Q\u:n@)ﬁ P + o)

3t v

Now integrating from 0 to t < ¢,,,, we have
—{Iu (OF + [ Aum (6" + M(|lum()]I*) + —||um( Moy + 10m(O) }+
1 .
+/ 10 ()1 ds < §Iulml2 + ];HuOme + | Augm* + [fom|* + M (|[uoml|*)+
0

s [+ P s+ [ (IR +lao)P) s
9



On a nonlinear system 2967

From hypotheses we obtain
M (Jlum(t)]1?) 2 —%\Aum(t)ﬁ (10)
It follows from (9), (10) and from hypothesis
O + (1= ) Dm0 + 2t oy + 00+
+/0t 10m(s)]1* ds < C + 3/(: {0 (O + Jur, ()7} ds.

From Gronwall’s inequality it follows that

g 2 '
() + (1= 32) B0+ 2 im0y + Om(OF + [ 1m0 ds < €
(11)
where C' > 0 constant independent of ¢ and m.

Being ||u,(t)]| < ClAuy,(t)|, we obtain from (11)
(tp)m is bounded in L>(0,T; H3(Q)); (12)
(ul,)m is bounded in L>(0,T; L*(2)); (13)
(|ttsn|?tm)m is bounded in Lg_ﬁ(Q); (14)
(U )m is bounded in L>°(0,T; Hy(S2)); (15)
(01n)m is bounded in L*°(0,T; L*(2)); (16)
(01n)m is bounded in L*(0,T; Hy(2)); (17)

Passage to Limit By Estimates above result that there exists subsequence,

if necessary, denoted by (u,,) and (6,,) and functions u, 6 : Q — R such that:
Uy — u weak-star in - L>®(0,T; HZ(Q))

ul, — u' weak-star in  L*°(0,T; L*(Q)) (18)
O, = 0 weak in  L*(0,T; H}(Q)).
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From (18);, (18)2 and Aubin-Lions’s Theorem, it followings that there exists

a subsequence of (u,,) such that

Uy — u  strongly in - L*(0,T; Hy(S2)),

hence
|lum(@®)|| — Ju(t)] a.e. in (0,7T).
Consequently
M(|lum(O*) = M([lu@®)]*) ae. in (0,T) (19)
and
| M (||lum ()][?)] < 0o, ae. in (0,T). (20)

From (19),(20) and Lebesgue’s Theorem we obtain
M([lum @) = M(Ju@®)]*) i L0,T). (21)
From (18); and (21) we it followings
M ([[um () Aty = M(JJu(®)[*)Au in - L0, T:L3(Q)).  (22)
Using Aubin-Lions’s Theorem and Lions’s Lemma we obtain
pt2

|t [Pty — |ulfu in L+t (Q). (23)

From convergence (18), (22), (23) and observing that V;, is dense in HZ(f)

we obtain
d, , 5 )
5 (W (1), w) + (Au(t), w) +M(/Q [Vau(t)*dz) ((u(t), w))+
; +([u(®)Pu(t), w) + (6(t), w) = (f(t), w) (24)

22000, 0) + ((0(0),w) + (u(1), w) = (9(¢),w)

for all w € HZ(Q) in the sense of D'(0,T).

From (24) and Teman’s Theorem [10] we obtain

u" € L*(0,T; H Q) and ¢ € L*(0,T; H1(Q)).



On a nonlinear system 2969

4 Uniqueness

To Proof the uniqueness, we increase the hypotheses: M is C! real function
and M(A\) >0, V AeR.
Let [u,0] and [@,0] be solutions of (24) under the conditions of Theorem 1.

Let w=u—@ and v =60 — . Then [w, v] satisfies

d p g
dt(w 2) + (Aw(t), Az) + M( / \Vul?dz)(Vw, Vz) + (|ulfu — |a|’d, 2)+
+ (v, 2) / \Val*dz)(Via, Vz) — / |Vul?dz)(Vi, Vz) (25)
%(v, 2)+ (Vu,Vz) + (w',2) =0 (26)
w(0) =0, w'(0)=0 and v(0) =0 (27)

Taking z = w’ in (25) and z = v in (26), we obtain
dygoso 1 2 SRR NPT
AP+ SAw + M( [ [Vulde)—fwl* + | (Julu — @] d)w'd
dt 2 o dt o
+ (v,w') = M(/ |Val*dz)(Vi, Vw') — M(/ \Vul?dz)(Va, V') (28)
0 0
d
P+ lol” + (', 0) =0 (29)
in the D'(0,7T) sense. Adding (28) to (29) we have
d g2 g, 1 2 SRR 2
g L' P+ ol + S|Aw]} + M( Q|VU| dz)— [wl” + [lv]
= /(Ml\pfc — |ulPu)w'dz — 2(v,w') + M(/ |Val*dz)(Vi, Vw')
0 Q

—M( /ﬂ |Vul?dz)(Vi, Vw')

IN

+ 2| (v, w')]

'/(\am ~ ulPu)wdz

’M/|Vu\ dx) /|Vu|2dx)

On the other hand, by Holder’s inequality with 1 .t E + 5 =1, we have

|[(Va, V')

‘/(|ﬂ|p1} — |ulPu)w'dx
0

< (p+1) / sup([ul?, |a]?)|w] [w'|dz
Q

< C (Il zm@) + 1181y ) ezl 2oy
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By hypotheses, we have pn < ¢ and from the immersion H}(2) — L7(f2)

with 1/qg = 1/2 — 1/n, we have

< C(llull? +11all?) wl] fw|

'/(]ﬁ\pﬁ — |ulPu)w'dx
Q

and since u, 4 € L>(0,T; HZ(2)), we have

’/ |a]Pt — |ulPu)w'dx

2|(v, )| < 2fv] ']

IN

Cllwl ']

Observe that

’ /]Vu]Qda: /\Vu|2dx) |(Va, Vu')|
< M@ |IVal* = |Vul|[(=A)a] ']
where ¢ is between |Vi|? and |[Vul?. Then we have
' /\Vu]Qda: /yvu\ dz)| |(Va, V)|
< C”|Vu| + |Vu|’ ’|Vu| |Vu|“ A)al |w'|
< Clla—ull [(=A)a] [w']
< Cllwl| ||

Substituting (30)—(32) in (28) and noting that

d
M(/ \Vul?dz)—|Vw|?
o dt

= & ([ 1vapanigu) - [Sar( [ [vukan)] 1vur

we obtain:

d 1
7 {W!Q + o]’ + S lAwl + M(/ !VU\Qdaﬁ)IVw\Q} +|lv®
Q

d
< P+ Cl)? + Cllwl|]?* + ’%M(/Q |Vul?dr)

< C{JwP + [P+ |lwl*} < C{|v]? + o] + |Aw]*}

[Vuwl?

(32)

(33)
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Integrating (33) from 0 to ¢ < T and using the hypotheses on M we have
1 T
WO + o0 + SlAw + [ o) Pds
0

t
< [ oGP + 1w ) + )P} ds
0
By Gronwall’s Lemma it follows that
[0(s)* + [w'(s)* + |Aw(s)* < 0.

This implies that v(t) = w(t) = 0 vVt € [0,7]. Or u(t) = u(t) and 6(t) =

0(t) Vt € [0,T]. This concludes the proof of uniqueness.
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