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Abstract 
 
Postnicov [22], in 2003, proposed an algorithm to compute the Hankel transforms 
of order zero and one by using Haar wavelets. But the proposed method faced 
problems in the evaluation of zero order Hankel transform. The purpose of this 
paper is to overcome this problem and obtain an efficient algorithm for evaluating 
Hankel transform of order zero by using rationalized Haar wavelets. Exact 
analytical representation of the Hankel transform, as series of the Bessel functions 
multiplied by the wavelet coefficients of the input function, is obtained.  
Numerical examples are given to illustrate the proposed algorithm. 
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1. Introduction 

In many physical problems like propagation of light beams through systems with 
cylindrical symmetry, one needs to compute the nth-order Hankel transform and 
the inverse Hankel transform, 
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where nJ  the nth-order Bessel function of the first kind, r is the radial coordinate 
and π2/p  is the spatial frequency. Analytical evaluations of (1) and (2) are rare 
and their numerical computations are difficult because of the oscillatory behaviour 
of the Bessel function and the infinite length of the interval. Since seminal work 
by Siegman [1] in 1977, a number of algorithms for the numerical evaluation of 
the Hankel transform have been published for both zero-order [2-11] and high-
order [12-22] Hankel transform. Unfortunately, the efficiency of a method for 
computing Hankel transform is highly dependent on the function to be 
transformed, and thus it is difficult to choose the optimal algorithm for given 
function. In [9], the authors used Filon quadrature Philosophy to evaluate zero-
order Hankel transform. They separated the integrand into the product of 
(assumed) slowly varying component and a rapidly oscillating one (in this case, 
former is )(  islatter   theand )( 0 prrJrf ). This methods works quite well for 
computing )(0 pF , for 1≥p , but the calculation of inverse Hankel transform is 
more difficult, as )(0 pF  is no longer a smooth function but a rapidly oscillating 
one.  
 
Postnikov [22] in 2003, gave the algorithm for evaluating the Hankel transform of 
zero and first order by representing the transforms as series of Bessel and Struve 
functions multiplied by the wavelet coefficients of the input function, but due to 
involvement of Struve functions in the representation of )(0 pF , the author could 
not compute it numerically. Recently in 2008, we [23] have given an efficient 
algorithm to compute Hankel transform using linear Legendre multi-wavelets.  
 
As the zero-order Hankel transform naturally arises in a variety of applications of 
technological interest, including optics [6,10], acoustics [2], electromagnetics [24] 
and image processing [25] and the method [22] faced difficulties in its evaluation, 
it motivated us for the present work  
 
The aim of this paper is to represent )(0 pF , as series of Bessel functions (only) 
multiplied by the Rationalized Haar (RH) wavelet coefficients of the input 
function, thereby getting an efficient algorithm for numerical evaluation of 
Hankel transforms of order zero. Numerical examples are given to illustrate the 
efficiency of proposed algorithm.  
 

2. Preliminaries 

The orthogonal set of Haar wavelets is a group of square waves with magnitudes 
2/2 j± and 0, ...2,1,0=j [26]. The use of Haar wavelets comes from rapid 

convergence feature of Haar series in the expansions of function compared with 
that of Walsh series. Lynch et al. [27] have rationalized the Haar functions by 
deleting the irrational numbers and introducing the integral powers of two. The 
modification results in what is called the RH functions. The RH functions  
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preserves all the properties of the original Haar functions and can be efficiently 
implemented using digital pipeline architecture [28]. The corresponding functions 
are known as RH functions. 
 
The orthogonal set of RH functions is a group of square waves with magnitude of 

1± in some interval and zeroes elsewhere [29]. The first function is 1)(0 =rh . The 
second function )(1 rh  is the fundamental square wave, or mother wavelet which 
also spans the whole interval [0,1), 
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And others are generated as follows for 1>n , 
 
 )  2()( 1 krhrh j

i −= .where  j2k0  ,0 , 2 <≤>+= jki j . kji ,,  are integers.    (4) 
 
The first function )(0 rh is also included to make this set complete. The 
orthogonality property is given by 
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3. Outlines of algorithm 

In practical applications, usually the function )(rf  has compact support and in 
many cases, though, the support may not be compact, given any 0>ε , there exist 
a compact interval εI such that ε<)(rf  for εIr ∉ . Hence it is more appropriate 
to consider the finite Hankel transform. Suppose )(rf  is supported on [ ]h,0 , then 
(1) reduces to 

 ∫=
1

0

)()()(ˆ drprrJrfpF nn ,                                       (6)         

known as the finite Hankel transform of )(rf , where r  is replaced by hr / . 
Writing )()( rrfrg =  in equation (6), we get                                      

                                         =)(ˆ pFn ∫
1

0

)()( rdrprJrg n .                                       (7)                         

The inverse finite Hankel transform is represented as Fourier-Bessel series [30]. 
The RH series representation of any function )(rg , which is square integrable in 
[ )1,0  may be expanded as      
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The series in equation (8) contains an infinite number of terms. We truncate it at 
level 1−= mi , where α2=m  for positive integerα , then equation (8) is reduced 
to                      
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Substituting (11) in (7), we get  
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(By change of variable and (4)). 
 

Using the following integral ( ) ( )∫ ∑
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The corresponding representation for the inverse finite Hankel transform of 

)(ˆ
0 pF  is similar to the equation (13) with obvious modifications. If the integral in 

(9) and (10) evaluating ic have closed form solutions, equation (13) gives us the 
full analytical solution for the zero-order Hankel transform. Otherwise the 
numerical solution is sought and our method provides an efficient algorithm for 
that. 
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4. Numerical examples 

As )(ˆ
0 pF contains only combination of Bessel functions and one can use their 

properties, such as orthogonality, known locality of the zeroes and the extremums, 
to obtain numerical solutions for )(0 pF  locally, by approximating them with 

truncated RH series (13) for finite Hankel transform )(ˆ
0 pF . We observe that the 

approximation is quite accurate from the illustrative numerical example 
possessing exact solution. 
 
 
  

Example1.  Let  
22

)( raerf −= then
22 4/

20 2
1)( ape
a

pF −= [31].                            (14) 

 
Here )(rf is a rapidly decreasing function .The RH series representation (13) 
gives the exact analytical solutions of (14). It is observed that the Hankel 
transform of order zero, )(0 pF  and approximate transform )(ˆ

0 pF  truncated at 
level 31 and  4 == Nα coincide as shown in fig.1. Note that, here replacement r  
to hr /  is used. Also )(0 pF and )(ˆ

0 pF  are marked as f0(p) (solid line) and F0(p) 
(dotted line) respectively in the figure. The error E(p) =F0(p) – f0(p) is shown in 
fig.2. 
 
 
 
 

             
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1.Exact transform, f0(p) (solid line), and the transform F0(p), (dotted line) truncated at level      
            31 and  4 == Nα . 
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           Fig.2. Error between approximated transform, F0 (p) and exact transform f0(p) for    
                     31 and  4 == Nα . 
                                     
 

Example 2: Let [ ]2/12 )1()arccos(2)( rrrrf −−=
π

,  10 ≤≤ r , 

then,  

                ∞≤≤= p
p
pJpF 0,)2/(2)( 2

2
1

0 . [9]                                   (15) 

 
Barakat et al. [9], evaluated ( )pF0  numerically using Filon quadrature philosophy 
but the associated error is appreciable for 1<p ; whereas our methods give almost 
zero errors in that range. Note that ( )pF0  and ( )pF0

)
 are indicated by ( )pf 0  

(solid line) and ( )pF0  (dotted line) in the Figs.3 and 4 respectively.  
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Fig.3. Error between approximated transform, F0(p) and exact transform f0(p) for   
             31 and  4 == Nα . 
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 Fig.4. Error between approximated transform, F0(p) and exact transform f0(p) for   
             31 and  4 == Nα . 
 
 
Example 3: Sombrero function  

The following example was studied by [3,23,32], we apply our proposed method 
to solve it and it is found that the proposed method is better.  

                               Circ( ar / ) =
⎩
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                                          (16) 

  The zero-order HT of  Circ( ar / ) is the Sombrero function, given by  

                             
ap
apJapS )()( 12

0 = . 

We use Eq. (13) to obtain approximation for the FHT ( )pF0

)
 of the Circ( ar / ). 

These approximations are compared with the exact HT ( )pS0  and are shown in 
Figs.5 and 6 respectively. Fig.6 represents the corresponding 
error ( ) ( )pSpFpE 00)( −=

)
. Note that ( )pS0  and  ( )pF0

)
 are indicated by ( )pf 0  

(solid line) and ( )pF0  (dotted line) in the Figs.5 and 6 respectively.  
 

               
 
 
 
 
 
 
 
 
 
 
 

Fig.5.Exact transform, f0 (p) (solid line), and the transform F0 (p), (dotted line) truncated at level   
              31 and  4 == Nα . 
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       Fig.6. Error between approximated transform, F0 (p) and exact transform f0(p) for    
                  31 and  4 == Nα . 
 
 
 
Conclusion 
 
The proposed algorithm is simple, efficient and is better than those given by 
[3,9,23,32].  
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