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Abstract

This paper deals with the blow-up profiles of the nonnegative solu-
tions to a degenerate reaction-diffusion system with nonlinear nonlocal
sources involved in a product with local terms, subject to the homoge-
neous Dirichlet boundary conditions. It will be proved that If p1, p2 ≤ 1
and q1q2 > (m − p1)(n − p2) the nonlocal terms play a leading role in
the blow-up profiles, i.e. the system has global blow-up and the uni-
form blow-up profiles are obtained. This extends a recent work of [10],
which considered the uniform blow-up profile of the single equation of
the same system.
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1 Introduction

In this paper, we study the following coupled degenerate parabolic system with
nonlinear nonlocal sources
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut = �um + up1

∫
Ω

vq1(x, t)d x, x ∈ Ω, t > 0,

vt = �vn + vp2

∫
Ω

uq2(x, t)d x, x ∈ Ω, t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.1)

where Ω ⊂ R
N is a bounded domain with smooth boundary ∂Ω, m, n >

1, p1, p2, q1, q2 > 0. The initial data u0, v0 are nontrivial nonnegative
bounded smooth functions and vanish on ∂Ω. Many physical phenomena have
formulated into nonlocal mathematical models(see [2, 5, 6, 10, 11] and the
reference therein).

In recent years, a numbers of works have contributed to the study of the
blow-up profiles of the semilinear parabolic system. Souplet’s elegant work
[11] plays a critical role in this area. The method (or modified method) in [11]
was extensively used in many other works, we refer the readers to [6, 8, 9, 10]
and the references therein.

In [10], Liu et al have considered the following single equation

ut = up(�u + aur

∫
Ω

usd x), x ∈ Ω, t > 0, (1.2)

with null Dirichlet boundary condition. When p + r ≤ 1, they have obtained
the following limit under some hypotheses

lim
t→T ∗ u(x, t)(T ∗ − t)1/(p+r+s−1) = (a | Ω | (p + r + s − 1))1/(1−p−r−s).

In [4], Du considered the global existence and non-existence of system (1.1),
and obtained that
Theorem A. If m < p1 or n < p2 or q1q2 > (m − p1)(n − p2), then the
nonnegative solution of (1.1) blows up in finite time for sufficiently large values
and exists globally for sufficiently small initial values.

Furthermore, if m > p1, n < p2, q1 > m− p1 and q2 > n − p2, they yielded
the blow-up rates of system (1.1) under some appropriate hypotheses. But for
problem (1.1), it seems that the blow-up solutions have global blow-up and the
blow-up is uniformly in any compact subset of the domain Ω provided that
p1, p2 ≤ 1 and q1q2 > (m−p1)(n−p2). Motivated by this result, we will prove
it in this paper.

Throughout this paper we assume that q1q2 > (m − p1)(n − p2) and the
initial data u0 and v0 satisfy the conditions as follows:
(H1)�um

0 (x)+up1

0 (x)
∫

Ω
vq1

0 (x)d x > 0, �vn
0 (x)+vp2

0 (x)
∫

Ω
uq2

0 (x)d x > 0 for x ∈
Ω.
(H2)�um

0 (x) ≤ 0, �vn
0 (x) ≤ 0 for x ∈ Ω.

Now let us state our main results.
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Theorem 1.1 Assume (H1) − (H2) hold and (u, v) is a classical solution of
(1.1) which blows up in finite time T ∗. Let p1, p2 ≤ 1, then the following
statements hold uniformly on any compact subset of Ω.
(i) If p1, p2 < 1 and q1q2 > (m − p1)(n − p2), then

lim
t→T ∗ u(x, t)(T ∗ − t)θ =| Ω |−θ σ

q1
q1q2−(1−p1)(1−p2) θ

1−p2
q1q2−(1−p1)(1−p2) ,

lim
t→T ∗ v(x, t)(T ∗ − t)σ =| Ω |−σ θ

q2
q1q2−(1−p1)(1−p2) σ

1−p1
q1q2−(1−p1)(1−p2) ,

where θ = 1+q1−p2

q1q2−(1−p1)(1−p2)
, σ = 1+q2−p1

q1q2−(1−p1)(1−p2)
.

(ii) If p1 = 1 or p2 = 1, then

lim
t→T ∗ log u(x, t) | log(T ∗ − t) |−1=

1 + q1 − p2

q1q2
,

lim
t→T ∗ log v(x, t) | log(T ∗ − t) |−1=

1 + q2 − p1

q1q2
.

2 Proof of the Theorem 1.1

In this section we will give the proof of Theorem 1.1. We first introduce some
transformations. Let U(x, τ) = um(x, t), V (x, τ) = (n/m)n/n−1vn(x, t), τ =
mt, then (1.1) becomes the following system not in divergence form:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Uτ = U r1(�U + aUp3

∫
Ω

V q3(x, τ)d x), x ∈ Ω, τ > 0,

Vτ = V r2(�V + bV p4

∫
Ω

U q4(x, τ)d x), x ∈ Ω, τ > 0,

U(x, τ) = V (x, τ) = 0, x ∈ ∂Ω, τ > 0,
U(x, 0) = U0(x), V (x, 0) = V0(x), x ∈ Ω,

(2.1)

where r1 = (m−1)/m, r2 = (n−1)/n, p3 = p1/m, q3 = q1/n, p4 = p2/n, q4 =
q2/m, a = (m/n)q1/(n−1), b = (m/n)(p2−n)/(n−1), U0(x) = um

0 (x), V0(x) =
(m/n)n/(n−1)vn

0 (x).
Remark. Clearly, when m = n, p1 = p2, q1 = q2, u0(x) = v0(x), system (2.1)
is reduced to a single equation (1.2), the uniform blow-up profile of which has
been considered by Liu et al in [10]. And the uniform profile of the special
case p3 = p4 = 0 of system (2.1) have been considered by Duan et al in [6].

Under these transformations, the assumptions (H1) − (H2) become
(H ′

1)�U0(x) + aUp3

0 (x)
∫

Ω
V q3

0 (x)d x > 0, �V0(x) + bV p4

0 (x)
∫

Ω
U q4

0 (x)d x >
0, for x ∈ Ω.
(H ′

2)�U0(x) ≤ 0, �V0(x) ≤ 0, for x ∈ Ω.
In section 4 of [4], Du have given the existence of the classical solution

(U, V ) of (2.1) under the hypothesis (H ′
1).
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Before we prove Theorem 1.1, we give the following Lemmas.

For convenience, we denote

f(τ) =

∫
Ω

U q4(x, τ)d x, F (τ) =

∫ τ

0

f(s)d s,

g(τ) =

∫
Ω

V q3(x, τ)d x, G(τ) =

∫ τ

0

g(s)d s.

Lemma 2.1 Assume that (U, V ) is a classical solution of (2.1) which blows
up in finite time T∗ ≡ mT ∗. If p1 ≤ 1, p2 ≤ 1, then

lim
τ→T∗

g(τ) = lim
τ→T∗

G(τ) = ∞, lim
τ→T∗

f(τ) = lim
τ→T∗

F (τ) = ∞.

Moreover, U and V blow up simultaneously.

Proof. In view of (U, V ) blows up in finite time T∗, We have ‖ U(·, τ) ‖∞ + ‖
V (·, τ) ‖∞→ ∞, as τ → T∗. Without loss of generality we may assume that ‖
U(·, τ) ‖∞→ ∞, as τ → T∗. Suppose on the contrary that limτ→T∗ g(τ) < ∞.
So, from the equation of U in system (2.1), we know that U exists globally for
any U0(x)(see [12]), since 0 < p3 = p1/m ≤ 1. This leads to a contradiction.
Therefore limτ→T∗ g(τ) = ∞. It can be deduced that limτ→T∗ ‖ V (·, τ) ‖∞= ∞
from g(τ) =

∫
Ω

V q3(x, τ)d x and limτ→T∗ g(τ) = ∞. Then we conclude that U
and V blow up simultaneously.

Next we infer that limτ→T∗ G(τ) = ∞. Set Ũ(τ) = maxx∈Ω U(x, τ). By

Theorem 4.5 of [7] we know that Ũ(τ) is Lipschitz continuous and

Ũ ′(τ) ≤ Ũ r1+p3(τ)g(τ) a.e. in [0, T∗). (2.2)

In view of r1 + p3 = 1 + (p1 − 1)/m, integrating (2.2) over (0, τ), we obtain⎧⎨
⎩

1

1 − r1 − p3
Ũ1−r1−p3(τ) ≤ aG(τ) +

1

1 − r1 − p3
Ũ1−r1−p3(0), if p1 < 1,

log Ũ(τ) ≤ aG(τ) + log Ũ(0), if p1 = 1.
(2.3)

From limτ→T∗ Ũ(τ) = ∞, it follows that limτ→T∗ G(τ) = ∞.

Furthermore, from limτ→T∗ ‖ V (·, τ) ‖∞= ∞, applying the similar argu-
ments as above to the equation of V in system (2.1), we have limτ→T∗ f(τ) =
limτ→T∗ F (τ) = ∞. �

To prove Theorem 1.1, we try to show the relationships among U, V, F (τ)

and G(τ). We use the notation f(τ) ∼ g(τ) for limτ→T∗
f(τ)
g(τ)

= 1.
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Lemma 2.2 Under the conditions of Theorem 1.1, the following statements
hold uniformly on any compact subset of Ω.
(i). If p1 < 1 and p2 < 1, then

U1−r1−p3(x, τ) ∼ a(1 − r1 − p3)G(τ), V 1−r2−p4(x, τ) ∼ b(1 − r2 − p4)F (τ).

(ii). If p1 < 1 and p2 = 1, then

U1−r1−p3(x, τ) ∼ a(1 − r1 − p3)G(τ), log V (x, τ) ∼ bF (τ).

(iii). If p1 = 1 and p2 < 1, then

log U(x, τ) ∼ aG(τ), V 1−r2−p4(x, τ) ∼ b(1 − r2 − p4)F (τ).

(iv). If p1 = p2 = 1, then

log U(x, τ) ∼ aG(τ), log V (x, τ) ∼ bF (τ).

Proof. (i). From p1 < 1, we have 1 − r1 − p3 > 0, then a direct computation
yields

∂ U1−p3

∂ τ
= U r1(�U1−p3 + p3(1 − p3)U

1−p3 | ∇U |2 +a(1 − p3)g(τ))

≥ U r1(�U1−p3 + a(1 − p3)g(τ)),

which shows that U1−p3(x, τ) is a supersolution of the following problem⎧⎨
⎩

wt = w
r1

1−p3 (�w + a(1 − p3)g(τ), ) x ∈ Ω, 0 < τ < T∗,
w(x, τ) = 0, x ∈ ∂Ω, 0 < τ < T∗,
w(x, 0) = U1−p3

0 (x), x ∈ Ω.

In view of 0 < r1/(1 − p3) < 1, under the assumptions (H ′
1) − (H ′

2), it
follows from (4.15) in [3] that

lim
τ→T∗

w
r1

1−p3 (x, τ)

a(1 − r1 − p3)G(τ)
= lim

τ→T∗

‖ w(·, τ) ‖
r1

1−p3∞
a(1 − r1 − p3)G(τ)

= 1 (2.4)

holds uniformly on any compact subset of Ω. By comparison methods (see
[1]), we obtain

U1−p3(x, τ) ≥ w(x, τ), for (x, τ) ∈ Ω × [0, T∗).

Hence from (2.4), the following limit holds on any compact subset of Ω

lim inf
τ→T∗

U1−r1−p3(x, τ)

a(1 − r1 − p3)G(τ)
≥ 1 , lim inf

τ→T∗

‖ U(·, τ) ‖1−r1−p3∞
a(1 − r1 − p3)G(τ)

≥ 1. (2.5)
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On the other hand, it follows from the case p1 < 1 in (2.3) that

lim sup
τ→T∗

Ũ1−r1−p3(τ)

a(1 − r1 − p3)G(τ)
≤ 1. (2.6)

From Ũ(τ) = maxx∈Ω U(x, τ), (2.5) and (2.6) guarantee that

lim
τ→T∗

U1−r1−p3(x, τ)

a(1 − r1 − p3)G(τ)
= lim

τ→T∗

‖ U(·, τ) ‖1−r1−p3∞
a(1 − r1 − p3)G(τ)

= 1

holds uniformly on any compact subset of Ω.
If p2 < 1, by the similar arguments, we have

lim
τ→T∗

V 1−r2−p4(x, τ)

b(1 − r2 − p4)F (τ)
= lim

τ→T∗

‖ V (·, τ) ‖1−r2−p4∞
b(1 − r2 − p4)F (τ)

= 1

holds uniformly on any compact subset of Ω.
(ii). If p1 < 1, analogous to case (i), we have

U1−r1−p3(x, τ) ∼ a(1 − r1 − p3)G(τ).

If p2 = 1, i.e. 1 − r2 − p4 = 0, using the similar computations as case (i),
we obtain

Vτ ≥ V

(�V 1−p4

1 − p4

+ bf(τ)

)
.

Hence V 1−p4 is a supersolution of the following problem:⎧⎨
⎩

zτ = z(�z + b(1 − p4)f(τ)), x ∈ Ω, 0 < τ < T∗,
z(x, τ) = 0, x ∈ ∂Ω, 0 < τ < T∗,
z(x, 0) = V 1−p4

0 (x), x ∈ Ω.

Set

α(x, τ) = b(1 − p4)F (τ) − log z, β(τ) =

∫
Ω

α(y, τ)ϕ(y)d y,

where ϕ(y) > 0 is the eigenfunction corresponding to the first eigenvalue λ1

of −� in Ω with
∫

Ω
ϕ(y)d y = 1. Under the assumptions (H ′

1) − (H ′
2), using

the similar methods in [3], we have the following statement holds uniformly on
any compact subset of Ω:

lim
τ→T∗

log z(x, τ)

b(1 − r2 − p4)F (τ)
= lim

τ→T∗

‖ log z(·, τ) ‖∞
b(1 − r2 − p4)F (τ)

= 1.

Proceeding as case (i), we arrive at the corresponding conclusion.
Case (iii) and (iv) can be treated similarly. �
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Lemma 2.3 Under the assumptions of the Theorem 1.1, for any given positive
constants 0 < δ, ε < 1, γ > 1, there exists T̃ such that for all τ ∈ [T̃ , T∗), the
following statements hold.
(i). If p1 < 1 and p2 < 1, then

εδa(1 + q4 − r1 − p3)(b(1 − r2 − p4)F (τ))
1+q3−r2−p4

1−r2−p4

≤ γb(1 + q3 − r2 − p4)(a(1 − r1 − p3)G(τ))
1+q4−r1−p3

1−r1−p3 ,

εδb(1 + q3 − r2 − p4)(a(1 − r1 − p3)G(τ))
1+q4−r1−p3

1−r1−p3

≤ γa(1 + q4 − r1 − p3)(b(1 − r2 − p4)F (τ))
1+q3−r2−p4

1−r2−p4 .

(ii) If p1 < 1 and p2 = 1, then

1 + q4 − r1 − p3

1 − r1 − p3
log(a(1 − r1 − p3)G(τ))

+ log (εδγ) + log
bq3

a(1 + q4 − r1 − p3)
≤ bq3γF (τ),

bq3δF (τ) ≤ 1 + q4 − r1 − p3

1 − r1 − p3
log(a(1 − r1 − p3)G(τ))

+ log
γδ

ε
+ log

bq3

a(1 + q4 − r1 − p3)
.

(iii). If p1 = 1 and p2 < 1, then

1 + q3 − r2 − p4

1 − r2 − p4

log(b(1 − r2 − p4)F (τ))

+ log (εδγ) + log
aq4

b(1 + q3 − r2 − p4)
≤ aq4γG(τ),

aq4δG(τ) ≤ 1 + q3 − r2 − p4

1 − r2 − p4
log(b(1 − r2 − p4)F (τ))

+ log
γδ

ε
+ log

aq4

b(1 + q3 − r2 − p4)
.

(iv). If p1 = p2 = 1, then

log
aq4εγ

bq3δ
+ bq3δF (τ) ≤ aq4γG(τ),

aq4δG(τ) ≤ log
aq4δ

bq3εγ
+ bq3γF (τ).
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Proof. (i). p1 < 1 and p2 < 1. In view of F ′(τ) = f(τ) =
∫

Ω
U q4(x, τ)d x, G′(τ) =

g(τ) =
∫

Ω
V q3(x, τ)d x, from case (i) of Lemma 2.2, we have

F ′(τ) ∼| Ω | (a(1−r1−p3)G(τ))
q4

1−r1−p3 , G′(τ) ∼| Ω | (b(1−r2−p4)F (τ))
q3

1−r2−p4

as τ → T∗. Then, for chosen positive constants δ < 1 < γ, there exists t0 < T∗
such that for all t0 ≤ τ < T∗

δ | Ω | (a(1 − r1 − p3)G(τ))
q4

1−r1−p3 ≤ F ′(t) ≤ γ | Ω | (a(1 − r1 − p3)G(τ))
q4

1−r1−p3 ,

δ | Ω | (b(1 − r2 − p4)F (τ))
q3

1−r2−p4 ≤ G′(τ) ≤ γ | Ω | (b(1 − r2 − p4)F (τ))
q3

1−r2−p4 .

And thus, for any τ ∈ [t0, T∗)

δ(a(1 − r1 − p3)G(τ))
q4

1−r1−p3

γ(b(1 − r2 − p4)F (τ))
q3

1−r2−p4

≤ d F

d G
≤ γ(a(1 − r1 − p3)G(τ))

q4
1−r1−p3

δ(b(1 − r2 − p4)F (τ))
q3

1−r2−p4

. (2.7)

From the right side of (2.7), we get

δ(b(1−r2−p4)F (τ))
q3

1−r2−p4 d F ≤ γ(a(1−r1−p3)G(τ))
q4

1−r1−p3 d G, for τ ∈ [t0, T∗).

Integrating above from t0 to τ , it follows that

δ(b(1 − r2 − p4)F (s))
1+q3−r2−p4

1−r2−p4

b(1 + q3 − r2 − p4)
|τt0 ≤ γ(a(1 − r1 − p3)G(τ))

1+q4−r1−p3
1−r1−p3

a(1 + q4 − r1 − p3)
. (2.8)

Due to limτ→T∗ F (τ) = ∞ and 1− r2 − p4 = (1− p2)/n > 0, for given constant
0 < ε < 1, there exists t̃0 : t0 ≤ t̃0 < T∗ such that

F
1+q3−r2−p4

1−r2−p4 (t0) ≤ (1 − ε)F
1+q3−r2−p4

1−r2−p4 (τ), for τ ∈ [t̃0, T∗).

Hence, from (2.8), it can be deduced that for all τ ∈ [t̃0, T∗)

εδa(1 + q4 − r1 − p3)(b(1 − r2 − p4)F (τ))
1+q3−r2−p4

1−r2−p4

≤ γb(1 + q3 − r2 − p4)(a(1 − r1 − p3)G(τ))
1+q4−r1−p3

1−r1−p3 . (2.9)

Application of the similar analysis as above to the left side of (2.7) guar-
antees that there exists t∗0 < T∗, such that for all τ ∈ [t∗0, T∗)

εδb(1 + q3 − r2 − p4)(a(1 − r1 − p3)G(τ))
1+q4−r1−p3

1−r1−p3

≤ γa(1 + q4 − r1 − p3)(b(1 − r2 − p4)F (τ))
1+q3−r2−p4

1−r2−p4 . (2.10)

Set T̃ = max{t̃0, t∗0}, then (2.9) and (2.10) ensure case (i) of Lemma 2.3.
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Analogous to case (i), we can draw the other conclusions of Lemma 2.3.
�

Proof of Theorem 1.1. Choose {δi}∞i=1, {εi}∞i=1, {γi}∞i=1, satisfying 0 <
δi, εi < 1 and γi > 1, i = 1 ... ∞, with δi, εi, γi → 1, as i → ∞.
Putting (δ, ε, γ) = (δi, εi, γi) in Lemma 2.3, we get T̃i < T∗ such that the

corresponding (i) − (iv) of Lemma 2.3 hold for all T̃i ≤ τ < T∗.
(i) p1 < 1, p2 < 1. From case (i) of Lemma 2.2 it follows that for such

sequences {δi}∞i=1, {γi}∞i=1, there exists {ti}∞i=1 : ti < T∗, with ti → T∗, as i →
∞, such that for all τ ∈ [ti, T∗)

δi(a(1−r1−p3)G(τ))
q4

1−r1−p3 ≤ U q4(x, t) ≤ γi(a(1−r1−p3)G(τ))
q4

1−r1−p3 . (2.11)

Denote T ∗
i = max{ti, T̃i}, then (2.11) and case (i) of Lemma 2.3 assert that

for all T ∗
i ≤ τ < T∗

F ′(τ)≥ δi | Ω | (a(1 − r1 − p3)G(τ))
q4

1−r1−p3

≥ δi | Ω |(εiδi

γi
)

q4
1+q4−r1−p3 (

a(1 + q4 − r1 − p3)
b(1 + q3 − r2 − p4)

)
q4

1+q4−r1−p3 (b(1 − r2 − p4)F (τ))
q4(1+q3−r2−p4)

(1+q4−r1−p3)(1−r2−p4) ,

(2.12)

F ′(τ) ≤
γi | Ω |( γi

εiδi
)

q4
1+q4−r1−p3(

a(1 + q4 − r1 − p3)
b(1 + q3 − r2 − p4)

)
q4

1+q4−r1−p3 (b(1−r2−p4)F (τ))
q4(1+q3−r2−p4)

(1+q4−r1−p3)(1−r2−p4) .

(2.13)

Notice that 1− q4(1+q3−r2−p4)
(1+q4−r1−p3)(1−r2−p4)

= − 1
σ(1−p2)

< 0, where σ = 1+q2−p1

q1q2−(1−p1)(1−p2)

is defined in Theorem 1.1. Integrating (2.12) and (2.13), we obtain that for all
T ∗

i ≤ τ < T∗

ci | Ω | b
nσ

(a(1+q4−r1−p3)
b(1+q3−r2−p4)

)
q4

1+q4−r1−p3 ≤ (T∗ − τ)−1(b(1 − r2 − p4)F (τ))
−1

σ(1−p2)

≤ Ci | Ω | b
nσ

(a(1+q4−r1−p3)
b(1+q3−r2−p4)

)
q4

1+q4−r1−p3 ,

(2.14)

where ci = δi(
εiδi

γi
)

q4
1+q4−r1−p3 , Ci = γi(

γi

εiδi
)

q4
1+q4−r1−p3 .

By letting i → ∞ in (2.14), we can deduce that

(b(1 − r2 − p4)F (τ))
−1

σ(1−p2) ∼ b

nσ
(
a(1 + q4 − r1 − p3)

b(1 + q3 − r2 − p4)
)

q4
1+q4−r1−p3 (T∗ − τ).

In view of 1 − r2 − p4 = (1 − p2)/n, it follows from case (i) of Lemma (2.2)
that

(T∗ − τ)σV 1/n(x, τ) ∼ (
b

nσ
| Ω |)−σ(

a(1 + q4 − r1 − p3)

b(1 + q3 − r2 − p4)
)

−q4σ
1+q4−r1−p3 (2.15)
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holds uniformly on any compact subset of Ω.
Similarly as above, it can be inferred that

(T∗ − τ)θU1/m(x, τ) ∼ (
a

mθ
| Ω |)−θ(

b(1 + q3 − r2 − p4)

a(1 + q4 − r1 − p3)
)

−q3θ
1+q3−r2−p4 (2.16)

holds uniformly on any compact subset of Ω, where θ = 1+q1−p2

q1q2−(1−p1)(1−p2)
.

Combining (2.15), (2.16) with the transform about (u(x, t), v(x, t)), We
can draw the conclusion of case (i) of Theorem 1.1.

(ii) p1 = 1 or p2 = 1. we divide this case into three subcases (a) p1 <
1, p2 = 1, (b) p1 = 1, p2 < 1, (c) p1 = p2 = 1. We first discuss subcase (a).

Analogous to the beginning of the proof of case (i), it follows from case (ii)
of Lemma 2.2 and case (ii) of Lemma 2.3 that for all T ∗

i ≤ τ < T∗

F ′(τ) ≥ δi | Ω | (a(1 − r1 − p3)G(τ))
q4

1−r1−p3

≥ δi | Ω | (
εi

τiδi
)

q4
1−r1−p3 (

a(1 + q4 − r1 − p3)
bq3

)

q1
1+q1−p2

exp(
bq3q4δi

1 + q4 − r1 − p3
F (τ)),

F ′(τ) ≤ γi | Ω | (γiεiδi)
− q4

1−r1−p3 (
a(1 + q4 − r1 − p3)

bq3
)

q1
1+q1−p2

exp(
bq3q4δi

1 + q4 − r1 − p3
F (τ)).

Application of similar analysis as in case (i), we get

lim
τ→T∗

bF (τ) | log(T ∗ − t) |−1=
1 + q4 − r1 − p3

q3q4

. (2.17)

Since δi , εi, γi → 1, as i → ∞ and G(τ), F (τ) → ∞, as τ → T∗, then by case
(ii) of Lemma 2.3

lim
τ→T∗

bF (τ)

log(a(1 − r1 − p3)G(τ))
=

1 + q4 − r1 − p3

(1 − r1 − p3)q3
.

Hence

lim
τ→T∗

log(a(1 − r1 − p3)G(τ)) | log(T∗ − τ) |−1=
1 − r1 − p3

q4

. (2.18)

By joining (2.17), (2.18) and case (ii) of Lemma 2.2, we have

log V (x, τ) ∼ bF (τ) ∼ 1 + q4 − r1 − p3

q3q4
| log(T∗ − τ) |, (2.19)

log U(x, t) ∼ 1

1 − r1 − p3
log(a(1 − r1 − p3)G(τ)) ∼ 1

q4
| log(T∗ − τ) | (2.20)

uniformly on any compact subset of Ω.
The corresponding conclusion in Theorem 1.1 of subcase (a) can be directly

drawn by combining (2.19), (2.20) with the transformation about (u(x, t), v(x, t)).
Finally, we can verify subcase (b) and (c) by similar means of subcase (a)

and case (i). So we complete the proof of Theorem 1.1. �
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