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Abstract

In this note we give a method to construct non-trivial harmonic mor-
phisms via conformal change of the metric of the domain generalizing
a theorem previously only known in the case of start manifold to be
an open subset of C

2. As its application, we manufacture harmonic
morphisms from conformally flat spaces.
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1 Preliminaries

Harmonic morphisms between Riemannian manifolds are mappings, which pre-
serve solutions of Laplace’s equation. They form a special class of harmonic
maps, namely those that are horizontally conformal.

Call a smooth map φ : (M, g) → (N, h) between Riemannian manifolds is
horizontally (weakly) conformal if for any point x ∈ M which is not contained
in the critical set Cφ = {x ∈ M | dφx = 0} of φ, the restriction of dφx to the
orthogonal complement

Hx = {X ∈ TxM | g(X, Y ) = 0 for all Y ∈ Ker dφx}
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of Ker dφx is surjective and conformal onto the tangent space Tφ(x)N .
Recall that a smooth map f : M → N between Riemannian manifold is

harmonic if and only if it has vanishing tension field, equivalently, it is a critical
point of its energy functional [1].

A smooth map f : M → N between Riemannian manifold is called a
harmonic morphism if for any harmonic function ψ : U → R defined on an
open subset U of N with f−1(U) non-empty, ψ◦f : f−1(U) → R is a harmonic
function. The reader is referred to [2] for a detailed account of harmonic
morphisms. Harmonic morphisms can be characterized as follows:

Theorem 1.1([2, 3])A map φ : M → N between Riemannian manifolds
is a harmonic morphism if and only if it is a horizontally (weakly) conformal
harmonic map.

2 Harmonic morphisms with respect to a con-

formally altered metric

In this section we extract a sufficient condition for ϕ : (M2n, e2ηg) → (N2, h)
to be harmonic.

Recall that an almost Hermitian manifold (M, g, J) with Kähler form ω,
is said to be cosymplectic if d∗ω = 0 or equivalently, divJ = 0.

Theorem 2.1. Assume that (M2n, g, J) is a cosymplectic manifold and that
η is a real valued function defined in M2n. If ϕ is a holomorphic map from
M2n into some Riemann surface (N2, h, JN ) satisfying dϕ(gradη) = 0, then

ϕ : (M2n, e2ηg) → (N2, h)

is a harmonic morphism.

Proof. The well-known result by Lichnerowicz tells us that holomorphic map
from a cosymplectic manifold to a (1, 2)-symplectic manifold is harmonic [5].
Note that an almost Hermitian manifold with Kähler form ω, is said to be
(1, 2)-symplectic if the (1, 2)-part of dω vanishes, and any Riemann surface is
automatically (1, 2)-symplectic.

Recall from the Cauchy-Riemann equations that any holomorphic map
from an almost Hermitian manifold to a Riemann surface is horizontally weakly
conformal. Combining this with Lichnerowicz’s result and Fuglede-Ishihara’
characterization [2, 3], we obtain that a holomorphic map ϕ from cosymplectic
manifold (M2n, g, J) to Riemann surface (N2, h, JN) is a harmonic morphism.
Setting g̃ = e2ηg. It is easy to verify that ϕ : (M2n, g̃) → (N2, h) is horizon-
tally weakly conformal. Moreover, by Theorem 5.1 of [8], ϕ : (M2m, g̃) →
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(N2, h) is harmonic if and only if grad
[
(e−η)

n−2
]

is vertical on M\Cϕ where

grad denotes the gradient of function. This is equivalent to dϕ(gradη) = 0.
On the other hand, if x is a interior point of Cϕ, then there is an open subset
U of M , such that x ∈ U ⊂ Cϕ, and τ(ϕ)(x) = Traceg̃∇̃dϕ(x) = 0 where τ(ϕ)
is the tension field with respect to g̃. Suppose that x is a condensation point
of Cϕ. Then there exists a sequence xj (j = 1, 2, · · · ) on M\Cϕ such that
limj→+∞ xj = x. Because τ(ϕ) is a smooth field along ϕ, we get

0 = lim τ(ϕ)(xj) = τ(ϕ)(x)

To sum up, we have τ(ϕ) = 0, hence, ϕ is harmonic if dϕ(gradη) = 0. Therefore
ϕ is a harmonic morphism by Fuglede-Ishihara’ result [2, 3].

Remark 2.2 Theorem 2.1 is a natural extension of Theorem 3.1 of [10].

3 Harmonic morphisms from conformaly flat

spaces

Two Riemannian metrics g and ḡ on M are said to be conformally equivalent, if
there exists a function ψ on M such that ḡ = e2ψg. A map ϕ : (M, g) → (N, h)
between Riemannian manifolds is said to be conformal if there exists a function
ψ on M such that ϕ∗h = e2ψg. Two Riemannian manifolds (M, g) and (N, h)
are said to be conformally diffeomorphic, if there exists a conformal diffeomor-
phism ϕ : (M, g) → (N, h). An n-dimensional Riemannian manifold (M, g)
is called a conformaly flat space if for any point of M there is a neighborhood
which is conformally diffeomorphic to the Euclidean space Rn.

We shall construct a harmonic morphism from R2m, with a suitable con-
formally flat metric, to R2. Let k1, · · · , km be non-negative integers which are
not all zero, and let ϕ : R

2m → R
2 be the polynomial map, homogeneous of

degree k1 + · · ·+ km, defined in complex coordinates by

ϕ(z) = zk11 z
k2
2 · · · zkm

m (3.1)

(z = (z1, · · · , zm) ∈ C × · · · × C = R
2m)

For any i,
∂ϕ

∂z̄i
= 0 implies that ϕ is holomorphic.

Consider real valued function in Cm. Then

gradη = Σi

(
∂η

∂zi

∂

∂z̄i
+
∂η

∂z̄i

∂

∂zi

)
.
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Note that ϕ is holomorphic,

dϕ(gradη) = Σi

(
∂η

∂zi

∂ϕ

∂z̄i
+
∂η

∂z̄i

∂ϕ

∂zi

)
= Σi

∂η

∂z̄i

∂ϕ

∂zi

= Σi
∂η

∂z̄i
kiz

ki−1
i zk11 · · · ẑiki · · · zkm

m

=
(∏m

i=1 z
ki−1
i

)(
Σm
j=1kjz1 · · · ẑj · · · zm

∂η

∂z̄j

)
.

Thus the equation dϕ(gradη) = 0 is equivalent to(
m∏
i=1

zki−1
i

)(
Σm
j=1kjz1 · · · ẑj · · · zm

∂η

∂z̄j

)
= 0.

A solution to this equation is given by

η(z) =

⎧⎪⎪⎨
⎪⎪⎩

Σ
m/2
i=1 (k2i|z2i−1|2 − k2i−1|z2i|2) if m is even

k2k3|z1|2 − k1

2
(k3|z2|2 + k2|z3|2)

+Σ
(m−1)/2
i=2 (k2i+1|z2i|2 − k2i|z2i+1|2)

if m is odd.
(3.2)

In fact, when m is even, then

η(z1, · · · , zm) = Σ
m/2
i=1 (k2iz2i−1z̄2i−1 − k2i−1z2iz̄2i).

It follows that
∂η

∂z̄2i−1
= k2iz2i−1,

∂η

∂z̄2i
= −k2i−1z2i.

Thus we have

Σm
j=1kjz1 · · · ẑj · · · zm

∂η

∂z̄j

= Σ
m/2
j=1k2jz1 · · · ẑ2j · · · zm ∂η

∂z̄2j
+ Σ

m/2
j=1k2j−1z1 · · · ẑ2j−1 · · · zm ∂η

∂z̄2j−1

= Σ
m/2
j=1k2jz1 · · · ẑ2j · · · zm(−k2j−1z2j)

+Σ
m/2
j=1k2j−1z1 · · · ẑ2j−1 · · · zm(k2jz2j−1)

= −Σ
m/2
j=1k2jk2j−1

∏m
i=1 zi + Σ

m/2
j=1k2jk2j−1

∏m
i=1 zi = 0.

It follows that dϕ(gradη) = 0. If m is odd, then

η(z1, · · · , zm) = k2k3z1z̄1 − k1

2
(k3z2z̄2 + k2z3z̄3)

+Σ
(m−1)/2
i=2 (k2i+1z2iz̄2i − k2iz2i+1z̄2i+1).
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It follows that

∂η

∂z̄1
= −k2k3z1,

∂η

∂z̄2
= −k1k3

2
z2,

∂η

∂z̄3
= −k1k2

2
z3

and when i ≥ 2,

∂η

∂z̄2i
= k2i+1z2i,

∂η

∂z̄2i+1
= −k2iz2i+1.

Thus we have

Σm
j=1kjz1 · · · ẑj · · · zm

∂η

∂z̄j

= k1z2 · · · zm ∂η

∂z̄1
+ k2z1z3 · · · zm ∂η

∂z̄2
+ k3z1z2z4 · · · zm ∂η

∂z̄3

+Σ
(m−1)/2
j=2 k2jz1 · · · ẑ2j · · · zm ∂η

∂z̄2j
+ Σ

(m−1)/2
j=2 k2j+1z1 · · · ẑ2j+1 · · · zm ∂η

∂z̄2j+1

= k1z2 · · · zmk2k3z1 + k2z1z3 · · · zm(−k1k3

2
z2) + k3z1z2z4 · · · zm(−k1k2

2
z3)

+Σ
(m−1)/2
j=2 k2jz1 · · · ẑ2j · · · zmk2j+1z2j

+Σ
(m−)/2
j=2 k2j+1z1 · · · ẑ2j+1 · · · zm(−k2jz2j+1) = 0.

We obtain that dϕ(gradη) = 0 if m is odd.
By using Theorem 2.1, we obtain the following

Proposition 3.1Let ϕ : (R2m, g0) → R2 be the polynomial map defined
in (3.1) where g0 is the standard Riemannain metric on R2m. Then ϕ is a
harmonic morphism from conformally flat space (R2m, eηg0) to R2 where η is
defined in (3.2).

Remark 3.2 For a different approach to the same problem where m = 2,
using isoparametric functions, see [1], page 404.
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