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Abstract

Various dynamic derivative formulae have been proposed in the de-
velopment of a time scales calculus, with the goal of unifying continuous
and discrete analysis. Recent discussion of combined dynamic derive-
tives, in particular the �α derivative defined as a linear combination of
the � and the � derivatives, have promised improved approximation
formulae for computational aplication. In this article we study some
result on the diamond-α dynamic derivative on time scales.
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1 Introduction

Much of the development of time scales theory has focused on the unification of

continuous and discrete analytical methods. Recent discussions have suggested

that the theory and methods of time scales might also provide a means of inte-

grating difference and differential methods for modeling nonlinear systems of

dynamic equation on domains that are arbitrary nonempty closed subsets of

the reals. To this end, the usefulness of various dynamic derivative formulae,

including the standard � and � derivatives, in approximating functions and

solution of nonlinear differential equations has been explored [2, 3, 5, 10]. It

has been demonstrated in several recent papers [8-10] that a proposed dynamic

derivative formula, called the �α derivative and defined as a linear combina-

tion, or the Broyden’s formula [4, 12], of the � and the � dynamic derivatives,

provides a more accurate approximation to the conventional derivative. The

question remains, however, as to whether the �α derivative is a well-defined

dynamic derivative upon which a calculus on time scale can be built.

James W. Profers Jr. and Qin Sheng redefined �α derivative indepen-

dently of the standard � and � dynamic derivatives, and further examined

its properties and relationship with the � and � formulae.

This paper give some results on the diamond-α dynamic derivative on time

scales.

2 General Definitions

Here, first we mention several foundational definitions without proof and re-

sults from the calculus on time scales in an excellent introductory text by

Bohner and Peterson [2, 3].

2.1 The delta and nabla derivatives

An one-dimensional time scale T is an arbitrary nonempty closed subset of

R and has the inherited topology. Let a = inf T and b = supT. For t ∈ T
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such that a < t < b, we define the forward-jump operator, σ, and backward-

jump operator, ρ, aσ(t) : T → T, is given by σ(t) = infs∈�{s > t} , ρ(t) =

infs∈�{s < t} respectively, and σ(b) = b, ρ(a) = a,

If T is bounded. The corresponding forward-step and backward-step func-

tions μ, η are defined as μ(t) = σ(t) − t, η(t) = t − ρ(t), respectively. For a

function f defined on T, to provide a shorthand notation we let

fσ = f(σ(t)), fρ = f(ρ(t)).We say that a point t ∈ T is right-scattered if

σ(t) > t and left-scattered if ρ(t) < t. A point t ∈ T that is both right-scattered

and left-scattered is called scattered. Also, we say that a point t ∈ T is right-

dense if σ(t) = t, left-scattered if ρ(t) = t, and dense if it is both right-dense

and left-dense.

We define T
k = T\ {b} if T is bounded above and b is left-scattered; other-

wise T
k = T. Similarly, we define Tk = T\ {a} if T is bounded below and a is

right-scattered; otherwise T
k = T. We denote T

k ∩ Tk by T
k
k, μ(t) = η(t). A

uniform time scale is an interval if μ(t) = 0, and is a uniform difference grid if

μ(t) > 0.

We say a function f defined on T is right continuous at t ∈ T if for all ε > 0

there is some δ > 0 such that for all s ∈ [t, t + δ), |f(t) − f(s)| < ε. Similarly,

we say that f is left continuous at t ∈ T if for all ε > 0 there is some δ > 0

such that for all s ∈ [t − δ, t), |f(t) − f(s)| < ε. The function f(t) is said to

be continuous if it is both right and left continuous.

For the sake of readability of subsequent formulas, we introduce the follow-

ing notation. Let t, s ∈ T and define μts = σ(t) − s, ηts = ρ(t) − s.

Let f : T →R be a function on a time scale. Then for t ∈ T
k we define f�(t)

to be the value, if one exists, such that for all ε > 0 there is a neighborhood

U of t (i.e., U = (t − δ, t + δ) ∩ T for some δ > 0) such that for all s ∈ U∣∣[fσ(t) − f(s))] − f�(t) [σ(t) − s]
∣∣ ≤ ε |σ(t) − s| .

We say that f is delta differentiable on T
k provided f�(t) exists for all

t ∈ T
k. Similarly, for t ∈ T

k we define f�(t) to be the number, if one exists,

such that for all ε > 0 there is a neighborhood V of t such that for all s ∈ V∣∣[fρ(t) − f(s))] − f�(t) [σ(t) − s]
∣∣ ≤ ε |ρ(t) − s| .

We say that f is nabla differentiable on Tk provided f�(t) exists for all

t ∈ Tk.

In subsequence proofs, we will wish to make use of the following theorem

due to Hilger [6], and the analogous theorem for the nabla case which can be

found in [1, 2]:
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Theorem 1 Assume f : T →R is a function and let t ∈ T
k. Then we have

the following:

(i) If f is delta differentiable at t, then f is continuous at t.

(ii) If f is left continuous at t and t is right-scattered, then f is delta

differentiable at t with

f�(t) = fσ(t)−f (t)
σ(t)−t

.

(iii) If t is right-dense, then f is delta differentiable at t iff the limit

lims→t
f(t)−f (s)

t−s

exists as a finite number. In this case

f�(t) = lims→t
f(t)−f (s)

t−s
.

Theorem 2 Asssume f, g : T →R are differentiable at t ∈ T
k. then:

(i) The sum f + g : T →R is differentiable at t with

(f + g)�(t) = f�(t) + g�(t).

(ii) For any constant α, αf : T →R is differentiable at t with

(αf)�(t) = αf�(t).

(iii) The product fg : T →R is differentiable at t with

(fg)�(t) = f�(t)g(t) + f(σ(t))g�(t) = f(t)g�(t) + f�(t)g(σ(t).

(iv) If f(t)f(σ(t)) �= 0, then 1
f

is differentiable at t with(
1
f

)�
= − f�(t)

f(t)f (σ(t))
.

(v) If g(t)g(σ(t)) �= 0, then f
g

is differentiable at t and(
f
g

)�
= f�(t)g(t)−f (t)g�(t)

f(t)f (σ(t))
.

Example 1 (i) If f : T →R is defined by f(t) = α for all t ∈ T, where α ∈ R

is constant, then f�(t) ≡ 0.

(ii) If f : T →R is defined by f(t) = t for all t ∈ T, then f�(t) ≡ 1

Example 2 The derivative of t2 is t + σ(t).

Theorem 3 Assume f : T →R is a function and let t ∈ Tk. Then we have

the following:

(i) If f is nabla differentiable at t, then f is continuous at t.

(ii) If f is right continuous at t and t is left-scattered, then f is nabla

differentiable at t with

f�(t) = f(t)−fρ(t)
t−ρ(t)

.

(iii) If t is left-dense, then f is nabla differentiable at t iff the limit

lims→t
f(t)−f (s)

t−s
.
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exists as a finite number. In this case

f�(t) = lims→t
f(t)−f (s)

t−s
.

Theorem 4 Asssume f, g : T →R are differentiable at t ∈ T
k. then:

(i) The sum f + g : T →R is differentiable at t with

(f + g)�(t) = f�(t) + g�(t).

(ii) For any constant α, αf : T →R is differentiable at t with

(αf)�(t) = αf�(t).

(iii) The product fg : T →R is differentiable at t with

(fg)�(t) = f�(t)g(t) + f(σ(t))g�(t) = f(t)g�(t) + f�(t)g(σ(t).

(iv) If f(t)f(σ(t)) �= 0, then 1
f

is differentiable at t with(
1
f

)�
= − f�(t)

f(t)f (ρ(t))
.

(v) If g(t)g(σ(t)) �= 0, then f
g

is differentiable at t and(
f
g

)�
= f�(t)g(t)−f (t)g�(t)

f(t)f (ρ(t))
.

Theorem 5 Let c be constant and m ∈ N.

(i) For f defined by f(t) = (t − c)m we have

f�(t) =
m−1∑
ν=0

(σ(t) − c)ν(t − c)m−1−ν.

(ii) For g defined by g(t) = 1
(t−c)m we have

g�(t) = −
m−1∑
ν=0

1
(σ(t)−c)m−ν(t−c)ν+1 ,

provided (σ(t) − c)(t − c) �= 0.

Lemma 6 [11] If f1, f2, ..fn are � differentiable on T
i, then the product f1f2...fn

is � differentiable on T
i and

(f1f2...fn)
� = f�

1 f2...fn + fσ
1 f�

2 ...fn + fσ
1 fσ

2 f�
3 ...fn + fσ

1 fσ
2 ...f σ

n−1f
�
n .

2.2 The diamond-α dynamic derivate

Definition 1 [7] Let T be a time scale. We define f�α(t) to be the value,

if one exists, such that for all ε > 0 there is a neighborhood U of t (i.e.,

U = (t − δ, t + δ) ∩ T for some δ > 0 ) such that for all s ∈ U

|α [fσ(t) − f(s)] ηts + (1 − α) [fρ(t) − f(s)] μts − f�α(t)ηtsμts| ≤ ε |ηtsμts|
we say that f is diamond-α differentiable on T

k
k provided f�α(t) exists for

all t ∈ T
k.
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Theorem 7 [7] Let 0 ≤ α ≤ 1. If f is both � and � differentiable at t ∈ T,

then f is �α differentiable at t and f�α(t) = αf�(t) + (1 − α)f�(t).

Theorem 8 [10] Let f, g : T →R be diamond -α differentiable at t ∈ T. Then

(i) f + g : T →R is diamond-α differentiable at t ∈ T with

(f + g)�α(t) = f�α(t) + g�α(t).

(ii) For any constant c, cf : T →R is diamond-α differentiable at t ∈ T

with

(cf)�α(t) = cf�α(t).

(iii) fg : T →R is diamond-α differentiable at t ∈ T with

(fg)�α(t) = f�α(t)g(t) + αfσ(t)g�(t) + (1 − α)fρ(t)g�(t).

(iv) For g(t)gσ(t)gρ(t) �= 0, 1
g

: T →R is diamond-α differentiable at t ∈ T

with (
1
g

)�α

(t) = − 1
g(t)gσ(t)gρ(t)

((gσ(t) + gρ(t))g�α(t)−
−αg�(t)gσ(t) − (1 − α)g�(t)gρ(t)).

(v) For g(t)gσ(t)gρ(t) �= 0, f
g

: T →R is diamond-α differentiable at t ∈ T

with(
f
g

)�α

(t) = 1
g(t)gσ(t)gρ(t)

(f�α(t)gσ(t)gρ(t) − αfσ(t)gρ(t)g�(t)−
−(1 − α)fρ(t)gσ(t)g�(t)).

3 Main Results

Theorem 9 Let c be constant and m ∈ N.

(i) For f defined by f(t) = (t − c)m we have

f�(t) =

m−1∑
ν=0

(ρ(t) − c)ν(t − c)m−1−ν.

(ii) For g defined by g(t) = 1
(t−c)m we have

g�(t) = −
m−1∑
ν=0

1
(ρ(t)−c)m−ν(t−c)ν+1 ,

provided (ρ(t) − c)(t − c) �= 0.

Proof. We will prove the first formula by induction. If m = 1, then

f(t) = (t−c), and clearly f�(t) = 1 holds by Example 1 (i), (ii), and Theorem

2.(i). Now we assume that

f�(t) =
m−1∑
ν=0

(ρ(t) − c)ν(t − c)m−1−ν.
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holds for f(t) = (t − c)m and let F (t) = (t − c)m+1=(t − c)f(t). We use

the product rule (Theorem 2. (iii) ) to obtain

F�(t) = f(ρ(t)) + (t − c) f�(t)

=(ρ(t) − c)m + (t − c)

m−1∑
ν=0

(ρ(t) − c)ν(t − c)m−1−ν

=(ρ(t) − c)m +

m−1∑
ν=0

(ρ(t) − c)ν(t − c)m−ν

=

m∑
ν=0

(ρ(t) − c)ν(t − c)m−ν.

Hence, by mathematical induction, part (i) holds.

(ii) Next, for g(t) = 1
(t−c)m = 1

f(t)
we apply Theorem 4. (iv) to obtain(

1
g

)�
(t) = − g�(t)

g(t)g(ρ(t))

= −

m∑
ν=0

(ρ(t)−c)ν(t−c)m−ν

(t−c)m(ρ(t)−c)m

= −
m−1∑
ν=0

1
(ρ(t)−c)m−ν(t−c)ν+1 .

Theorem 10 Let c be constant and m ∈ N.

(i) For f defined by f(t) = (t − c)m we have

f�α(t) = α
m−1∑
ν=0

(σ(t)− c)ν(t− c)m−1−ν +(1−α)
m−1∑
ν=0

( ρ(t)− c)ν(t− c)m−1−ν.

(ii) For g defined by g(t) = 1
(t−c)m we have

g�α(t) = −α

m−1∑
ν=0

1
(σ(t)−c)m−ν(t−c)ν+1 − (1 − α)

m−1∑
ν=0

1
(ρ(t)−c)m−ν(t−c)ν+1 .

provided (ρ(t) − c)(t − c) �= 0.

Proof. We will prove the first formula by induction. If m = 1, then

f(t) = (t − c), and clearly f�(t) = 1 and f�(t) = 1 holds by Example 1. (i),

(ii), and Theorem 2. (i).

f�α(t) = α(t − c)� + (1 − α)(t − c)∇ = 1

If m = 2, then f(t) = t2 − 2ct + c2, and clearly f�α(t) = ασ(t) + (1 −
α)ρ(t) + t− 2c holds by Example 1. (i), (ii), Example 2., and Theorem 2. (i).

Now we assume that

f�α(t) = α
m−1∑
ν=0

(σ(t)− c)ν(t− c)m−1−ν + (1−α)
m−1∑
ν=0

(ρ(t)− c)ν(t− c)m−1−ν.

holds for f(t) = (t − c)m and let F (t) = (t − c)m+1=(t − c)f(t)
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F �α(t) = α
[
f(σ(t)) + (t − c) f�(t)

]
+ (1 − α)

[
f(ρ(t)) + (t − c) f�(t)

]
= α

[
(σ(t) − c)m +

m−1∑
ν=0

(σ(t) − c)ν(t − c)m−1−ν

]
+

+(1 − α)

[
(ρ(t) − c)m +

m−1∑
ν=0

(ρ(t) − c)ν(t − c)m−ν

]

= α
m∑

ν=0

(σ(t) − c)ν(t − c)m−ν + (1 − α)
m∑

ν=0

(ρ(t) − c)ν(t − c)m−ν.

(ii) Next, for g(t) = 1
(t−c)m = 1

f(t)
we apply Theorem 8. (iv) to obtain(

1
g

)�α

(t) = −α g�(t)
g(t)g(σ(t))

− (1 − α) g�(t)
g(t)g(ρ(t))

= −α

m−1∑
ν=0

(σ(t)−c)ν(t−c)m−1−ν

(t−c)m(σ(t)−c)m − (1 − α)

m∑
ν=0

(ρ(t)−c)ν(t−c)m−ν

(t−c)m(ρ(t)−c)m

= −α
m−1∑
ν=0

1
(σ(t)−c)m−ν(t−c)ν+1 − (1 − α)

m−1∑
ν=0

1
(ρ(t)−c)m−ν(t−c)ν+1 .

Corollary 11 It is clear that f�α(t) reduces to f�(t) for α = 1 and f�(t)

for α = 0.

Lemma 12 If f1, f2, ..fn are � differentiable on T
i, then the product f1f2...fn

is � differentiable on T
i and

(f1f2...fn)
�

= f�
1 f2...fn + fρ

1 f�
2 ...fn + fρ

1 fρ
2 f�

3 ...fn + fρ
1 fρ

2 ...f ρ
n−1f

�
n (1)

Proof. The proof is by induction. If n = 2, then (f1f2)
� = f�

1 f2 + fρ
1 f�

2 by

Theorem 2. (iii). Assume that formula is true for n. Then

(f1f2...fnfn+1)
� = f�

1 f2...fnfn+1 + fρ
1 (f2...fnfn+1)

�

= f�
1 f2...fnfn+1 + fρ

1 f�
2 f3...fnfn+1+

+fρ
1 fρ

2 f�
3 ....fnfn+1 + fρ

1 fρ
2 fρ

3 ...f σ
nf�

n+1

and formula (1) is true for n replaced by n + 1.

Theorem 13 If f1, f2, ..fn are both � and � differentiable on T
i, then the

product f1f2...fn is both � and � differentiable on T
i and

(f1f2...fn)
�α = α

[
f�

1 f2...fn + fσ
1 f�

2 ...fn + fσ
1 fσ

2 f�
3 ...fn + fσ

1 fσ
2 ...f σ

n−1f
�
n

]
+

+(1−α)
[
f�

1 f2...fn + fρ
1 f�

2 ...fn + fρ
1 fρ

2 f�
3 ...fn + fρ

1 fρ
2 ...f ρ

n−1f
�
n

]
Proof. The proof is by induction. If n = 2, then
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(f1f2)
�α = α

[
f�

1 f2 + fσ
1 f�

2

]
+(1−α)

[
f�

1 f2 + fρ
1 f�

2

]
by Theorem 8. (iii)

and Theorem 2. (iii). Assume that formula is true for n. Then

(f1f2...fnfn+1)
�α = α [f1f2...fnfn+1]

�
+ (1 − α) [f1f2...fnfn+1]

�

= α[f�
1 f2...fnfn+1+fσ

1 f�
2 f3...fnfn+1+fσ

1 fσ
2 f�

3 ....fnfn+1+

+fσ
1 fσ

2 fσ
3 ...f σ

nf�
n+1] + (1 − α)[f�

1 f2...fnfn+1 + fρ
1 f�

2 f3...fnfn+1+

+fρ
1 fρ

2 f�
3 ....fnfn+1 + fρ

1 fρ
2 fρ

3 ...f σ
nf�

n+1].

and formula is true for n replaced by n + 1.

Corollary 14 It is clear that f�α(t) reduces to f�(t) for α = 1 and f�(t)

for α = 0.
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