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1. Introduction

Hilger and Aulbach [2, 5] generalized the definition of a derivative and of
an integral to time scales in order to unify results from the calculus of real
numbers with results from the difference calculus. So after that time scales
calculus created. In this way many paper time scales were written by Agarwal,
Bohner, Hilscher, Peterson and joint professors.

A time scale is an arbitrary nonempty closed subset of the real numbers.
The calculus of time scales was initiated by B. Aulbach and S. Hilger [2, 5] in
order to create a theory that can unify discrete and continuous analysis. For
a treatment of the single variable calculus of time scales see [3, 4, 8] and the
references given therein. After that many theories in real numbers and integer
numbers are extended to time scales.

In this paper, we study some new dynamic inequalities for first order linear
dynamic equations on time scales.

We consider nonhomogeneous linear dynamical equation of first order

y�(t) + g(t)yσ(t) + eg(σ(t), t)h(t) = 0, y(a) = x(1.1)

We assume that T = [a, b] is an arbitrary interval. We moreover that g :
T → R, h : T → R, and ϕ : T → [0,∞) are functions such that for arbitrary c ∈
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T, g(t) and eg(σ(t), a)h(t) are integrable on [a, c], futher such that ϕ(t)eg(t, a)
is integrable on T, and g(t) is regressive (i.e.,g ∈ �).

We prove in Theorem.1 that if a rd-continuously differentiable function y :
T → R satisfies the differential inequality∣∣y�(t) + g(t)yσ(t) + eg(σ(t), t)h(t)

∣∣ ≤ ϕ(t)(1.2)

for all t ∈ Tk, then exists a unique solution y0(t) of the dynamical equation
(1.1) such that

|y(t) − y0(t)| ≤ e�g(t, a)

b∫
t

ϕ(υ)eg(υ, a) � υ

for any t ∈ T.
Here, first we mention several foundational definitions without proof and

results from the calculus on time scales in an excellent introductory text by
Bohner and Peterson [3, 4].

2. General Definitions

Definition 1. A time scale T is a nonempty closed subset of R. We assume
throughout that T has the topology that is inherited from the standard topology
on R. It also assumed throughout that in T the interval [a, b] means the set
{t ∈ T : s < t} for the points a < b in T. Since a time scale may not be
connected, we need the following concept of jump operators.

Definition 2. The mappings σ, ρ : T → T defined by σ(t) = inf {s ∈ T : s > t}
and ρ(t) = sup {s ∈ T : s < t} are called the jump operators.

The jump operators σ and ρ allow the classification of points in T in the
following way:

Definition 3. A nonmaximal element t ∈ T is said to be right-dense if σ(t) =
t, right-scattered if σ(t) > t, left-dense if ρ(t) = t,left-scattered if ρ(t) < t.

In the case T = R, we have σ(t) = t, and if T =hZ, h > 0, then σ(t) = t+h.

Definition 4. The mapping μ : T → R
+ defined by μ(t) = σ(t) − t is called

the graininess function. If T = R, then μ(t) = 0, and when T =Z, we have
μ(t) = 1.

Definition 5. Let f : T → R. f is called differentiable at t ∈ Tk, with (delta)
derivative f�(t) ∈ R if given ε > 0 there exists a neighborhood U of t such
that, for all s ∈ U,∥∥fσ(t) − f(s) − f�(t)[σ(t)− s]

∥∥ ≤ ε ‖σ(t) − s‖ ,

where fσ = f ◦ σ. If T = R, then f�(t) = df(t)
dt

,and if T = Z, then f�(t) =
f(t + 1) − f(t).

Some basic properties of delta derivatives are the following [3].
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Theorem 1. Assume that f : T → R and let t ∈ Tk.
(i) If f is differentiable at t, then f is continuous at t.
(ii) If f is differentiable at t and t is right-scattered, then f is differentiable

at t with

f�(t) =
fσ(t) − f(t)

σ(t) − t
.

(iii) If f is differentiable at t and t is right-dense, then

f�(t) = lim
t→s

f(t) − f(s)

t − s
.

(iv) If f is differentiable at t, then

fσ(t) = f(t) + μ(t)f�(t)

Theorem 2. Asssume f, g : T →R are differentiable at t ∈ T
k. then:

(i) The sum f + g : T →R is differentiable at t with
(f + g)�(t) = f�(t) + g�(t).

(ii) For any constant α, αf : T →R is differentiable at t with
(αf)�(t) = αf�(t).

(iii) The product fg : T →R is differentiable at t with
(fg)�(t) = f�(t)g(t) + f(σ(t))g�(t) = f(t)g�(t) + f�(t)g(σ(t).

(iv) If f(t)f(σ(t)) 
= 0, then 1
f

is differentiable at t with(
1
f

)�
= − f�(t)

f(t)f (σ(t))
.

(v) If g(t)g(σ(t)) 
= 0, then f
g

is differentiable at t and(
f
g

)�
= f�(t)g(t)−f (t)g�(t)

f(t)f (σ(t))
.

Definition 6. The function f : T → R is said to be rd-continuous (denoted
by f ∈ Crd(T,R)) if, at all t ∈ T,

(i) f is continuous at every right-dense point t ∈ T,
(ii) lims→t−f(s) exists and is finite at every left-dense point t ∈ T.

Definition 7. Let f ∈ Crd(T,R). Then g : T → R is called the antiderivative
of f on T if it is differentiable on T and satisfies g�(t) = f(t) for any t ∈ Tk.
In this case, we define

t∫
a

f(s) � s = g(t) − g(a), t ∈ T.
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2.1. The Hilger complex plane. For h > 0, define the Hilger complex num-
bers, the Hilger real axis, the Hilger alternating axis, and the Hilger imaginary
circle by

Ch =
{
z ∈ C : z 
= − 1

h

}
, Rh =

{
z ∈ R : z > − 1

h

}
Ah =

{
z ∈ R : z < − 1

h

}
, Ih =

{
z ∈ C :

∣∣z + 1
h

∣∣ = 1
h

}
respectively. For h = 0, let C0 := C, R0 := R, A0 := ∅, and I0 := iR.
Let h > 0 and z ∈ Ch. The Hilger real part of z is defined by Reh(z) := |zh+1|

h
,

and the Hilger imaginary part of z is defined by Imh(z) := Arg(xh+1)
h

, where
Arg(z) denotes the principle argument of z (i.e.,−π < Argz ≤ π).

For h > 0, define the strip Zh :=
{
z ∈ C : −π

h
< Argz ≤ π

h

}
, and for h = 0,

set Z0 := C. Then we can define the cylinder transformation ξh = Ch → Zh

by

ξh(z) =
1

h
Log(1 + zh), h > 0

where Log is the principle logarithm function. When h = 0, we define
ξ0(z) = z, for all z ∈ C. It then follows that the inverse cylinder transformation
ξ−1
h : Zh → Ch is given by

ξ−1
h (z) =

ezh − 1

h
.

Since the graininess may not be constant for a given time scale, we will
interchangeably subscript various quantities (such as ξ and ξ−1) with μ = μ(t)
instead of h to reflect this.

2.2. Generalized exponential Functions. The function p : T →R is re-
gressive if 1 + μ(t)p(t) 
= 0 for all t ∈ Tk, and this concept motivates the
definition of the following sets:

� =
{
p : T →R : p ∈ Crd(T) and 1 + μ(t)p(t) 
= 0 ∀t ∈ Tk

}
,

�+ =
{
p ∈ � : 1 + μ(t)p(t) > 0 for all t ∈ Tk

}
.

The function p : T →R is uniformly regressive on T there exists a positive
constant δ such that 0 < δ−1 ≤ |1 + μ(t)p(t)| , t ∈ Tk.

If p ∈ �, then we define the generalized time scale exponential function by

ep(t, s) = exp

⎛
⎝

t∫
s

ξμ(τ )(p(τ)) � τ

⎞
⎠ for all s, t ∈ T

The following theorem is a compilation of properties of ep(t, s) (some of
which are counterintuitive) that we need in the main body of the paper.

Theorem 3. The function ep(t, s) has the following properties:
(i) If p ∈ �, then ep(t, r)ep(r, s) = ep(t, s) for all r, s, t ∈ T.
(ii) ep(σ(t), s) = (1 + μ(t)p(t))ep(t, s).
(iii) If p ∈ �+, then ep(t, t0) > 0 for all t ∈ T.
(iv) If 1 + μ(t)p(t) < 0 for some t ∈ Tk, then ep(t, t0)ep(σ(t), t0) < 0.
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(v) If T =R, then ep(t, s) = e

t�

s
p(τ )dτ

. Morever, If p is constant, then ep(t, s) =
ep(t−s).

(vi) If T =Z, then ep(t, s) = Πt−1
τ=s(1 + p(τ)). Morever, If T =hZ, with h > 0

and p is constant, then ep(t, s) = (1 + hp)
(t−s)

h .

Definition 8. If p ∈ � and f : T →R is rd-continuous, then the dynamic
equation

y�(t) = p(t)y(t) + f(t)(2.1)

is called regressive.

Theorem 4. If p, q ∈ �, then
(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;
(ii) ep(σ(t), s) = (1 + μ(t)p(t))ep(t, s);
(iii) 1

ep(t,s)
= e�p(t, s);

(iv) ep(t, s) = 1
ep(s,t)

= e�p(s, t);

(v) ep(t, s)ep(s, τ ) = ep(t, τ );
(vi) ep(t, s)eq(t, s) = ep⊕q(t, s);

(vii)
ep(t,s)

eq(t,s)
= ep�q(t, s);

Theorem 5. (Variation of constants). Let t0 ∈ T and y(t0) = y0 ∈ R.Then
the regressive IVP (2.1) has a unique solution y : T →R given by

y(t) = y0ep(t, t0) +

t∫
t0

ep(t, σ(τ ))f(τ )� τ.

Theorem 6. (Variation of constants). Suppose (2.1) is regressive. Let t0 ∈ T

and x(t0) = x0 ∈ R. The unique solution of the initial value problem

x�(t) = −p(t)xσ + f(t), x(t0) = x0

is given by

x(t) = e�p(t, t0)x0 +

t∫
t0

e�p(t, τ )f(τ ) � τ.

3. Main Results

Theorem 7. Let T = [a, b] is an arbitrary interval, where a, b ∈ R∪{±∞} are
arbitrarily given with a < b. Assume that g : T → R with g(t) ∈ �, h : T → R,
are rd-continuous functions such that g(t) and eg(σ(t), a)h(t) are integrable
[a, c] for each c ∈ T. Moreover, suppose ϕ : T → [0,∞) is a functions such
that ϕ(t)eg(t, a) is integrable on T. If a rd-continuously differentiable function
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y : T → R satisfies the differential inequality (1.2) for all t ∈ T, then there
exists a unique x ∈ R such that∣∣∣∣∣∣y(t) − e�g(t, a)(x −

t∫
a

eg(σ(υ), a)h(υ)� υ)

∣∣∣∣∣∣(3.1)

≤ e�g(t, a)

b∫
t

ϕ(υ)eg(υ, a) � υ

for every T.

Proof. For simplicity, we use the following notation:

z(t) := eg(t, a)y(t) +
t∫

a

eg(σ(υ), a)h(υ)� υ

for each t ∈ T. By making use of this notation and by (1.2), we get

|z(t) − z(s)| =

∣∣∣∣∣∣eg(t, a)y(t)− eg(s, a)y(s) +

t∫
s

eg(σ(υ), a)h(υ)� υ

∣∣∣∣∣∣

=

∣∣∣∣∣∣
t∫

s

[eg(v, a)y(v)]
� � υ +

t∫
s

eg(σ(υ), a)h(υ)� υ

∣∣∣∣∣∣

=

∣∣∣∣∣∣
t∫

s

(
[eg(v, a)y(v)]

�
+ eg(σ(υ), a)h(υ)

)
� υ

∣∣∣∣∣∣

=

∣∣∣∣∣∣
t∫

s

[
eg(v, a)y�(v) + g(v)eg(v, a)yσ(v) + eg(σ(υ), a)h(υ)

]� υ

∣∣∣∣∣∣

=

∣∣∣∣∣∣
t∫

s

eg(v, a)
[
y�(v) + g(v)yσ(v) + eg(σ(υ), υ)h(υ)

] � υ

∣∣∣∣∣∣

≤
∣∣∣∣∣∣

t∫
s

ϕ(υ)eg(v, a) � υ

∣∣∣∣∣∣(3.2)

for any s, t ∈ T.
Finally, it follows from (3.2) and the above argument that for any t ∈ T,∣∣∣∣y(t) − e�g(t, a)(x−

t∫
a

eg(σ(υ), a)h(υ)� υ)

∣∣∣∣
= |e�g(t, a)(z(t) − x)|
≤ |e�g(t, a)(z(t)− z(s))| + |e�g(t, a)(z(s)− x)|
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≤ e�g(t, a) |z(t) − z(s)|+ e�g(t, a) |z(s)− x|
≤ e�g(t, a)

∣∣∣∣
t∫
s

ϕ(υ)eg(υ, a) � υ

∣∣∣∣ + e�g(t, a) |z(s) − x|

→ e�g(t, a)
b∫
t

ϕ(υ)eg(υ, a) � υ

as s → b, since z(s) → x as s → b.
It now remains to prove the uniquenass of x ∈ R. Assume that x1 ∈ R also

satisfies the inequality (3.1) in place of x. Then, we have

|e�g(t, a)(x1 − x)| ≤ 2e�g(t, a)
b∫
t

ϕ(υ)eg(υ, a) � υ

for any t ∈ T. It follows from the itegrability hypotheses that

|x1 − x| ≤ 2
b∫
t

ϕ(υ)eg(υ, a) � υ → 0

as t → b. This implies the uniqueness of x ∈ R.

Remark 1. we may now remark that

y(t) = e�g(t, a)(x −
t∫

a

eg(σ(υ), a)h(υ)� υ)

is the general solution of the differential equations (1.1), where x ∈ R is an
arbitrary element.

3.1. Examples. In this section, we will introduce some examples for linear
differential equations of first order whenever T =R as follows.

Example 1. If we take T = [a, b] ⊂ R is an arbitrary interval in R, and we
set h(t) ≡ 0, ϕ(t) ≡ ε in Theorem.1, we obtain the following result:

Let T = [a, b] is an arbitrary interval in R, where a, b ∈ R ∪ {±∞} are
arbitrarily given with a < b. It is clear that when T =R, then σ(t) = t, yσ(t) =
y(t) and μ = 0. Also, when T =R, then from (1.1) equation we get

y′(t) + g(t)y(t) + h(t) = 0,...y(a) = x
for all t ∈ T, and (1.2) inequality

|y′(t) + g(t)y(t) + h(t)| ≤ ϕ(t)
for any t ∈ T. Assume that g : T → R is a continuous and integrable

function on [a, c] for each c ∈ T such that exp

{
t∫

a

g(u)du

}
is integrable on

T. If a continuously differentiable function y : T → R satisfies the differential
inequality

|y′(t) + g(t)y(t)| ≤ ε
for all t ∈ T, then there exists a unique x ∈ R such that∣∣∣∣y(t) − exp

{
−

t∫
a

g(u)du

}
x

∣∣∣∣
≤ ε exp

{
−

t∫
a

g(u)du

}
b∫
t

exp

{
v∫
a

g(u)du

}
� υ

for each t ∈ T.
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Example 2. Let g < 0 nad h be fixed real numbers, let T = [a,∞) be an
interval with a ∈ R, and ϕ : T →R satisfies the differential inequality

|y′(t) + g(t)y(t) + h(t)| ≤ ϕ(t)
for all t ∈ T.
We can easily verify that the choices of g, h, ϕ and T are consistent with the

hypotheses of Theorm.1. Hence, there exists a unique c0 ∈ R such that∣∣∣y(t) − c0e
−gt + h

g
(1 − e−g(t−a))

∣∣∣ ≤ e−gt
∞∫
t

ϕ(υ)egυdυ

for any t ∈ T. Further, we know that y0(t) = c0e
−gt − h

g
(1 − e−g(t−a)) is a

(particular) solution of the differential equation y′(t) + g(t)y(t) + h(t) = 0.
If we set ϕ(t) ≡ ε and T = [a,∞) with a ≥ 0 in the above statement, then

there exists a unique solution y0(t) of the differential equation y′(t)+g(t)y(t)+
h(t) = 0 such that

|y(t) − y0(t)| ≤ ε
g

for all t ∈ T. (We may compare this with [1] or [10].)

Example 3. If we take T = [a, b] in real interval in R, it is clear that we can
have the same Theorem 1. in ([7]).
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