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Abstract

In this paper, a new method is presented to obtain the analytical
solution of singular linear periodic boundary value problems in the re-
producing kernel space. The analytical solution is represented in the
form of series. An example is given to demonstrate the reliability and
validity of the presented algorithm.
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1 Introduction

In this paper, we consider the following singular second-order periodic
boundary value problems in the reproducing kernel space

a(z)u”(x) + b(x)u/'(x) + c(x)u(x) = f(z), 0 <z <1,
u(0) = u(1), (1.1)
uw'(0) =u/(1),

where f(x) € W1|0, 1], u(z) € Ws[0, 1], a(z), b(x), c(x) are continuous, a(0) = 0
or/and a(1) = 0. The singular boundary value problem arises in a variety of
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applied mathematics and physics such as gas dynamics, nuclear physics, chem-
ical reaction, studies of atomic structures and atomic calculations. The study
of the periodic boundary value problem is one of the main classical topics in the
theory of ordinary differential equations. The periodic boundary value prob-
lems have been widely investigated by a number of authors in recent years[1-5].
However, the singular periodic boundary value problems are rarely considered.
In recent paper, Wang and jiang have established the existence and uniqueness
of results for the singular second-order periodic boundary value problems]6].
In [7-9], the authors discussed the existence of solutions to the singular second-
order periodic boundary value problems. However, there are few valid methods
for solving the singular second-order periodic boundary value problems.

In this paper, we will give the representation of analytical solution to
Eq.(1.1) and approximate solution in the reproducing kernel space under the
assumption that the solution to Eq¢.(1.1) is unique.

Let Lu = a(z)u”(x)+b(z)u'(z)+c(x)u(zr). Then the Eq.(1.1) can be converted
into the following form:

(1.2)

where f(x) € Wi[0,1],u(x) € W5[0,1]. W40, 1], W;5[0,1] are defined in the
following section.

2 Preliminary

In this section, some reproducing kernel spaces are defined to solve Fq.(1.2).

Space W3[0, 1] is defined as W3[0, 1] = {u|u” is absolutely continuous real
valued function and u® € L2[0,1],u(0) = u(1),4/(0) = «/(1)}. The inner
product (-,-) and the the norm || - ||w, are taken to be

1
(uy), v(y)) = / (36uv + 49u'v" + 14u"v" + uBv®)dy, u,v € W5(0,1] (2.1)
0

def

[ullwy = v/ (u,u)

respectively .

Theorem 2.1. The space W3[0, 1]is a reproducing kernel space, that is, for
any u(y) € W3[0, 1] and each fized x € [0, 1], there exists R,(y) € Ws[0, 1],y €
0,1], such that (u(y), R.(y)) = u(x), the reproducing kernel R.(y) can be
denoted by

cre¥ + coe Y + c3e? + che” + cse 4+ g™, y <z,
Rx(y) = - 2 -2 3 -3 ( -2)
d1€y+d2€ y+d3€ y+d4€ y+d5€ y+d6€ y’ Yy >,
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The coefficients of the reproducing kernel R, (y) and the proof of Theorem
2.1 are given in appendix A,B.

Space W10, 1] is defined by W;[0,1] = {ulu is absolutely continuous real
valued function and v’ € L?[0,1]} equipped with the inner product

1 1
(u, v)wy d:ef/ wvdx +/ u'v'dx, u,v € W10, 1]
0 0

and norm
def

[ullw, =/ (u, w)w,

respectively. In Ref.[10], the authors proved that Wi[0,1] is a reproducing
kernel space with the kernel

R,(y) = 28Th(l)[cosh(av +y — 1)+ cosh(|x —y| — 1)].

3 The method for solving Fq.(1.2)

In order to prove the main theorem of this paper, we give some lemmas
first of all.

Lemma 3.1. Put pg = f € Wi[0,1], pi(z) = R,.(2),i = 1,2,..., where
R.,(x) is the reproducing kernel of W1[0,1]. If {x;}3°, is dense on [0, 1], then
{pi(x)}2 is the complete system of W1|0, 1]

Proof. For Yu(z) € W1[0,1], let (u(x), ¢i(z))w, =0, =1,2,..., then

(u(z), oi(x))w, = (u(z), Re,(x))w, = u(z;) = 0,i = 1,2,.... Due to the
density of {z;}°, and the continuity of u(x), we have u(x) = 0, thus {¢;(z)}2,
is the complete system of W3[0, 1]. Therefore {p;(z)}52, is also the complete

system of W40, 1]. O

Now, we orthogonalize the function system {p;(x)}3°, and obtain an orthog-
onal system {g,(x)}2,, i.e. ,

@) = Zﬁik%pk(l') (3.1)
k=0

where (i, 1,k = 0,1,2,... are the coefficients of orthogonalization.

Let ¢;(z) = L*g,(x),i = 0,1,2,... L*is the conjugate operator of L. The
orthonormal system {1,(x)}2°, of W3[0, 1] can be derived from Gram-Schmidt
orthogonalization process of

Gi(x) = apthp(@)(i=1,2,- ). (3.2)
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Lemma 3.2. L is a bounded operator from W3[0, 1] to W1[0, 1].

Proof. Let R,(§) be the reproducing kernel of W3[0,1], by the property of
R, (&), we obtain

Ju(@)] = |(u(€), Ba(E))ws| <I| Bal€) llws |l ul2) [ws< Mo || u(x) [lw; - (33)

From the representation of R, (&), we can get

[ ()] = [(u(€), 2o Fa(@)wal <[l Rx(i) lwall u(@) llwsy - (3.4)
Since dd((z) R.(&),7=1,2,3 is uniformly bounded about x and £, we have
[u® ()| = M; || w(z) ||y, i =0,1,2,3. (3.5)
Hence
| Lu(z) [, = | afz)u’(z) + b(z)u(x) + c(@)u(z) [,
fo a(x)u”(x —|— b(x)u'(z) + c(x)u(z))dx
+ [ (a(z)u" () + b(x)u!(2) + c(z)u(z))rPde
< M| u(@) [lw,
by the continuity of a(x), b(z), c¢(x) and Eq. (3.5) O

From the proof of above lemma, we have the following corollary.
Corollary 3.1. W3[0, 1] is imbeded to space C10,1].
Lemma 3.3. A arbitrary bounded set of W5[0,1] is a compact set of C0,1].

Proof. Let {u,(z)}>2, be a bounded set of W3[0, 1]. Assume ||u,(z)|| < M, by
the (3.5), we known |lu,(z)||c < M, where || . ||¢ denote the norm of C[0, 1].
In order to prove that {u,(z)}22, is a compact set of C[0, 1], we only need to
prove {u,(x)}5%, are equicontinuous functions. In fact, from the property of
R, (&), it follows that

[un(1) = un(2)| = [(Un(E), B, (§) = Ra,y (§))]
< un(E)llws [ By (€) = Ry (€] (3.6)
< M|[Rq, (§) = Ba, (S]]

Using the symmetry of R,(§) and the mean value theorem of differentials, we
have

| Ry, (&) — Ry (€) | z’ﬁf(ﬂﬁ :f;(ﬁﬁ |= [%R§($)] ’x:n’ Ty — Ty | (3.7)

By the (3.6), (3.7), when ¢ <[ 1 — z2 |< 557, we have | u,(z1) — un(z2) [<
E. U
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Lemma 3.4. ¢;(x) = Y4, B LRo(xx),i = 0,1,2,..., where {x,}32, is a
dense set of [0, 1].

Proof.

dir) = Lgi(x) = (LGi(x), Ra(€))wy = (@5(2), LR(E))w
(D ko Biror, LR(E))wy = D p—o Bik (P, LR (E))

= o Bl Ry(x1),i=0,1,2,...

O

Theorem 3.1. Let L be a bounded linear operator from W3[0, 1] to W1[0, 1],
f(z) € Wh[0,1], then u(z) is a solution of (1.2) < The following (3.8) holds.

(u(@), vo(z)) = ([ f)
{(() Yu(2)) =0,mn=1,2,.... (3.8)
Proof. <) Since g, = f(z),¢i(x) = L*p;(x),i = 0,1,2,..., by (3.8), one

obtains

(f(2), () = (f(2), f(x)) = (u(x),tho(2)) = (u(z), L'y (x)) = (Lu(z), By(x)),

ie.,

0= (u(x), Pu(2)) = (u(x), L@, (2)) = (Lu(x), ?,(x))
x)

) = 0, we can find that

f(@),@,(x)),n=12,.... (3.10)

By the (3.9), (3.10), we obtain (Lu(z),®,) = (f(z),®,(x)),n =0,1,2,.... By
means of the orthogonality of {®,;}°,, we get Lu(x ) f(z).
=) Suppose u(z) is solution of (1.2), then

(Lu(x%@n(x)) = (f(”ﬁ)@n(@)’ n=012....
If n =0, then

(u(z), o(x)) = (u(z), L'@o(x)) = (Lu(z), @o(x)) = (f(x), () = (f, f).

If n=1,2,..., by the orthogonality of f(x) and {%,}°,, we have

(u(@), ¥n()) = (u(2), L'P,) = (Lu(z),%,) = (f(2),,) = (D0, ) = 0.
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We introduce the following notation :

U= {ulu =Y Nbi, {\;} € I’}
=1

U, = {uju= Z ANitbi, {\i} € R}
=1

and W4, UL denote the orthogonal complement of W, ¥, in W3[0,1]. In or-
der to emphasize the first function of {®;}2, is f(x), ¥, ¥, are denoted as

U(f), W, (f) respectively. {;(z)} is written as {¢;(x, f)}.

Lemma 3.5. The dimension of W(f)* is one.

Proof. We only need to prove that {1;(z)}3°, is complete system of W3[0, 1].
Let (u,iﬂi)ws =0,0=0,1,2,--- ,u € W3, with 2 =0,

(u, Yo)ws = (u, L"@g)ws = (Lu, fw, = 0. (3.11)

Put (u, ) = 0, then
(u, V1)wy = (u, L7021 )wy = (Lu, Brof + Buer)w, = 0.
By (3.11),
(u, Y1)ws = (Lu, Supr)w, = Bu((Lu) (), Ba, (1)) wy = Pu(Lu)(z1) = 0.
In view of By, > 0, then
Lu(ay) = 0. (3.12)

Let (u, ¥2)w, = 0, then

(ua w2>W3 u, L*¢2>W3 = (Lu7 ¢2>W1

(
= (Lu, Baof + Barpr + Bazp2)w, (3.13)
(L, Boo f)w, + Bor (L, 1) w, + Baa(Lat, 92)u, '

= Boo(Lu, f) + Bor(Lu)(x1) 4 Boz(Lu)(x2) = 0

From (3.11), (3.12) and (3.13), one can obtain that

(Lu)(x2) = 0. (3.14)
We can deduce by induction
(Lu)(xn) =0,n=1,2,---. (3.15)

Hence Lu = 0 by the density of {z,}2°, on [0, 1] and the continuity of Lu. It
follows that u = 0 from the existence of L™ .
U
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Theorem 3.2. The solution of Fq.(1.2) can be represented as

( ( f):L*f>W3

where g(z, f) € ¥,

Proof. Clearly,
( (f, Ny, f)
(9(z, f), L* f)w,

Since g(z, f) € ¥+, we must have

(f, Ny, f)
(9(1'7 f): L*f>W3

L ws = (1, 1),

( 7wi)W3:072’:1727“"

It is easy to obtain the following lemma by g,(z, f) € W (f).

Lemma 3.6. If P, is orthogonal projector from Ws to W, (f), Vh ¢ W(f),
let gn(z, f) = (h=Pvnh) *4hen

[|lh—Pinh||
(L Hgnlz, f)
satisfies
(una L*f>W3 = (f’ f>’ (318)

(Um%‘)wg = Oaizlaza"'an

Lemma 3.7. Let 6, = (gu(x, f), L*f), if |unllw, < M, then 6, > L= > 0.

Proof. Note that

(gn (@)L Py n @) L Dy W3
[HE (gnu D). gn(z, ) _ ||f|| < M2

n

lunllfy, =

Hence

On =

Hﬁf >0 (3.19)

O

Theorem 3.3. If ||u,|lw, < M, then Eq.(1.2) have a solution and the solution
is T = LI
CENIpAIIT.
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Proof. From lemma 3.3, we know that {u,} is a compact set on C[0, 1]. Thus

. co1] _ o .
there exists a subsequence uy, ‘0] u. By (3.19), it is easy to obtain 6,, —

§ > 0. Taking subsequence from (3.17)

D)
nk (gnk(xa f):L*f>W3

and taking limit, we get
(f, g, f)
(ﬁ(x, f): L*f)Ws '

From lemma 3.6, it is easy to see that u satisfies the conditions of theorem 3.1.
Thus @ is the solution of Fq.(1.2). O

u= (3.20)

4 Example

In this section, an example will be tested by using the method discussed
above. All experiments were performed in MATHEMATICA 5.0. Results
obtained by the method are compared with the exact solution.

Example 1
Consider the equation

zu”(z) + u'(z) + 2u(z) = f(z)
where
f(x) = 2e” @D (5 — 18z + 202% — 242 4 5227 — 482° + 162°),

u(z) € Ws[0,1] subject to boundary conditions u(0) = wu(1),u'(0) = /(1) .
The exact solution is u(x) = e ®~V”, The exact and approximate solutions
and the absolute error are displayed in Table 1 with N = 50.

5 Appendix

A The coefficients of the reproducing kernel
R.(y)

A= 96 (—1+4e)e3” (239 +244e — 246 €2 + 244 €3 + 239 %) ;

Ay = 60 (=1+e)e® (239+483¢ —2e? —2¢3 +483 e +239¢°)

480 (=1 +e) e3® (239 + 483 ¢ + 237 €2 + 2423 + 237 + 483 ¢® + 239 €9) ;

A (—27€% —27Tet £ 54T — 32657 2707 4326210 4 32657 + 32417 1473120 4478

e? T2 _ 50263127 4 4834 H27 4 478527 4 10! T1® + 10217 4 5 31T — 32145 — 32
62+5x +27el+6x);
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Table 1:
Node | True solution u(x) | Approximate solution usg(x) | Absolute error
0.08 1.00543 1.0054 0.0000296116
0.16 1.01823 1.01843 0.000206946
0.24 1.03383 1.0342 0.000369521
0.32 1.04849 1.04899 0.000500041
0.40 1.05929 1.05988 0.000586402
0.48 1.06428 1.0649 0.000615768
0.56 1.06259 1.06318 0.000589435
0.64 1.05452 1.05503 0.000510008
0.72 1.04148 1.04187 0.000385639
0.80 1.02593 1.02616 0.000227555
0.88 1.01121 1.01127 0.0000515199
0.96 1.00148 1.00137 0.00010512

c2 =

c3 =

cd =

ch =

c6 =

dl =

d2 =

d3 =

d4 =

ds =

d6 =

A (27 +27e5 +478eM T — 326%H7 — 32eMHF — 326517 152127 $107127 +10e 27 45

5+2 T 4483 et T 5022147 4 4783147 £ 4T3 AT 1 32115 % 4 322157 | 39357
27el+6x 2762+6x)

——(IOSe +108¢* —20e*® +128¢e%® — 108e8? — 367 e2H® — 372317 4 118et+® — 244 517
230 e5+T 4 20127 | 402427 4 40 32T 4 90 edH2T _ 40l taT _ 4o e2Han _ggedtaT
128115 ® 4 128215 — 108! 167);

— 2= (—108¢5 — 1080 — 239¢5® + 128 4% + 128 €5F® + 128 0+ — 203422 — g0 etH+22—
40e5+20 _ 20 ¢0+20 4 20 e2+4T 4 403HAT | 40eAHAT | 205 HAT _ 244 145 4 1182457
372 e3t52 _ 3674157 £ 1082162 4 108 e3162);

( 2513 — 241 e — 492¢e5 4 488¢0 + 4787 + 135e%? — 864 €>® + 72907 + 864 2% 4 864
Hha +864elt® — 135! 22 — 270 2+22 — 270342 — 135€4+2% 4 270! T1® 4+ 2702 F1° + 135
34T _ 864el 5T — 8642157 4 7291 T0);

27 (7208 + 7207 + 47807 — 864 €777 — 864017 — 864€7H7 + 135427 42705127 4 270
422 | 135,TH20 _ 135 ¢3+40 _ 970 ¢A+4T _ 970¢5+4® _ 135 ¢0+4T | 864357 4 g6 oM Ty
8645152 4 488 1162 _ 4922162 _ 941 3162 _ 257 416 2),
a7 (—27€% —27e! 447827 + 57 — 32677 42707 432717 4326717 4 3240 483! 27
—502 2122 1 478312 % 1 4734127 L 10! H1® £ 102117 4 53117 _ 321152 _ 3224574
27 116 ac)
= —(e! 737 27€% +27et + 4T3 T 32657 — 2707 — 3262HF — 32637 3267 451127 410
2+2 T 4103127 4 51127 L4781 T _ 5022147 4 4833T4 T 4 478 44T L 32115 4 32
2+5 T _ 97 el+6 ac)7
—ALZ(los e3 +108¢e* —239e” — 20e*® 4128 — 108e8® — 244 ' H® 4 118 2+* — 37237 —
367 et + 201122 4+ 402127 4 403127 4204122 — 40l tH4 T — 4024 — 20347 4 128
ett5® 4 128215 % — 108! T0);
— 2 (2737 —108¢ —108¢ +20€*® — 367¢% + 10857 + 1282+ + 128 3+® 4 128 4F2—
20e1+27 _ 402427 _ 40320 _ 904420 4 40l AT 4 40e2H4T 1903 HT 3726l t5 e 4 118
e2 TP _ 244345 @ — 2391H5® 4 108! T62);
a5 (478 +488¢ — 492¢% — 241 % — 251 e + 135 e ® — 8647 + 72007 + 864 €717 + 864 €317
A4+ _ 1+2x _ 242x _ 34+2x _ 442 x 1+4 x 244 x
864c 135e 270 e 270 e 135¢ +270e +270e +135
34T _ 864l T5T —864¢2T0% 4 729 ¢! H67);
A%(e%” 729e3 + 729 ¢ — 135%™ 4 864e°% — 25107 — 864 2T — 864 3T — 864 41T + 135
el T2 4 270242 4270 €372 4 135122 — 270!+ — 27021 ® — 135317 4 864! TOT4
864257 — 241 1167 _ 492 2462 | 4883167 1 478410 2),
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B The proof of Theorem(2.1)

Through several integrations by parts for (2.1), then

(W), Ra)wy = Jo w(@)(36Ra(y) — 9R7 () + 1R (y) = RO @)y + um)(49RL(0) )
—14RP () + RO )l + o/ () (14RE (9) = RO )1 + v ()R W)l

Since R,(y) € W3[0, 1], it follows that
R, (0) = R (1), 12, (0) = R, (1). (B-2)
Since u € W3[0, 1], u(0) = u(1),4/(0) = «/(1). If
49R. (1) — 14RP) (1) + RP(1) — (49R.(0) — 14RP) (0) + RP)(0)) =0 (B.3)
and
14RP (1) = RV (1) — (4R (0) — R{V(0)) = 0, R (0) = 0, R (1) = 0,(B.4)
then (B.1) implies that

(u(y), Ra())w, = /0 u(y) (36 Ry (y) — 49RP (y) + 14RM (y) — R (y))dy.

For Vz € [0, 1], if R,(y) also satisfies
36R: (y) — 49R (y) + 14RD (y) — RY (y) = 6(y — =), (B.5)

then
Characteristic equation of (B.5) is given by

A6 — 140* + 4907 — 36 = 0,

then we can obtain characteristic values \; = 1, = —1,A\3 = 2, \y =
—2,A5 = 3, and \¢ = —3. So, let

Raly) = c16Y + cae™Y + c3e?Y + cpe + c5e3V + e,y <z,
w\Y) = die¥ + doe Y + dze® 4 dye™% 4 dse¥ + dge™Y, y > w.

On the other hand, for (B.5), let R,(y) satisfy

R®(z+0)=RW(z—0),k=0,1,2,3,4. (B.6)

Integrating (B.5) from = — ¢ to « + ¢ with respect to y and let ¢ — 0, we have
the jump degree of RY (y)aty ==

R®(x —0) — RP)(x +0) = 1. (B.7)

From (B.2),(B.3),(B.4),(B.6), (B.7), the unknown coefficients of (2.2) can be
obtained.
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