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Abstract

The f -tolerant arc-forwarding index for a class of complete multi-
partite graphs are determined by constructing relevant fault tolerant
routings. Furthermore, these routings are leveled for Cocktail-party
graph and the complete 3-partite graph.
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1 Introduction

Routing communication demands is one of the fundamental problems in the
area of networking. One of the most recognized recent applications of the prob-
lem is in the area of optical networking[1]. Most of the research concentrates
on determining two invariants of a given optical network-the arc-forwarding
and optical indexes [3]. In [4], fault-tolerant issues of optical networks were
considered and the two invariants were generalized into so called f -tolerant
arc-forwarding and f -tolerant optical indexes. The parameter f represents the
number of faults that are tolerated in the optical networks. To determine the
arc-forwarding index of a network, one has to design a delicate path system
which uses every link in the network evenly.

An all-optical network can be modelled as a symmetric directed graph G
with vertex set V (G) and arc set A(G), i.e. , if (u, v) ∈ A(G) then (v, u) ∈
A(G). Let P (u, v) denote a directed path from u to v in G. An f-fault tolerant
routing is defined by

Rf(G) = {Pi(u, v) : (u, v) ∈ V (G) × V (G), u �= v, i = 0, · · · , f},
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where for each ordered pair (u, v) ∈ V (G)× V (G) of distinct nodes, the paths
P0(u, v), P1(u, v), · · · , Pf(u, v) are internally node disjoint. As noted in [2],
when links and/or nodes may fail in a network, it is important to establish
connections for a required communication demands, that guarantee fault-free
transmission. Assuming that at most f links/nodes may fail in the network,
the set Rf(G) will obviously provide such a routing.

In practical applications the number of different signals a link can carry
is limited. Therefore, the goal is to design a routing which minimizes the
maximum load on arcs. Let π(Rf(G)) denote the maximum load on arcs, that
is, the maximum number of times an arc of G appears in directed paths of
Rf (G). Then

πf (G) = min
Rf (G)

π(Rf(G))

is called the f -tolerant arc-forwarding index of G.
Consider an f -fault tolerant routing Rf (G). We say that a routing Rf

is optimal if its congestion achieves the index πf(G); and it is balanced if the
difference between congestions of two arcs is at most one. For any i = 0, · · · , f ,
the level i of the routing Rf is the set of paths Pi(u, v) ∈ Rf for all u �= v. It
follows that for any f ′ < f , the subrouting Rf ′(G) consisting of levels 0, · · · , f ′,
is f ′-fault tolerant. We say that an optimal balanced routing Rf (G) is leveled
if every one of its subroutings is also optimal and balanced.

In [4], the optimal and balanced routing Rf was constructed for all hy-
percube. Using design theory approach, A. Gupta et al. found the optimal
f -tolerant arc-forwarding indexes for complete graph of a prime power order
[6]. Following this approach, in this paper we determine the f -tolerant arc-
forwarding indexes for the complete multipartite graphs K{n,m} (here n is a
prime power) by constructing a fault tolerant routing. Furthermore, for some
f and P (e.g, the Cocktail-party graph), these routings are leveled.

2 Main results

The k-distance dk(u, v) of two vertices u and v is the minimum sums of
lengths of k internally node disjoint paths connecting u and v. In particular,
if k = 1 then d1(u, v) is the usual distance d(u, v).

The following lower bound for πf (G) was observed by Gupta et. al.

Lemma 2.1 (A.Gupta, [6]) For any graph G = (V, E) and f ≤ |V | − 2

πf (G) ≥
⌈

1

|E|
∑

u,v∈V

df+1(u, v)

⌉

�
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For two natural numbers n and m, we denote by K{n,m} the complete
n-partite graph with each partition part containing exactly m vertices. In
particular, if m = 2 then K{n,m} is known as the Cocktail-party graph CP (n).
For convenience, in the following the n partition parts of K{n,m} will be labeled
by the 0-th, 1-th, · · · , and the (n − 1)-th part, respectively. Similarly, the m
vertices in a partition part is labeled by 0, 1, · · · , m − 1. Furthermore, we
write the vertex j in the i-th partition part as 〈i, j〉, i ∈ {0, 1, · · · , n − 1}, j ∈
{0, 1, · · · , m − 1}.

By the definition of K{n,m}, for two vertices 〈i, s〉 and 〈i, t〉 with s �= t, one
can see that every path from 〈i, s〉 to 〈i, t〉 has length at least 2, and thus we
have df+1(〈i, s〉, 〈i, t〉) ≥ 2(f + 1). On the other hand, for two vertices 〈i, s〉
and 〈j, t〉 with i �= j, it can also be observed that there is only one path of
length 1 and exactly m(n− 2) internally node disjoint paths of length 2 which
connect 〈i, s〉 and 〈j, t〉, respectively. And all other paths have length at least
3. This implies that, if f ≤ m(n − 2) then

df+1(〈i, s〉, 〈j, t〉) ≥ 2f + 1;

and if f > m(n − 2) then

df+1(〈i, s〉, 〈j, t〉) ≥ 1 + 3f − m(n − 2).

Therefore, by Lemma 2.1 we have
a) If f ≤ m(n − 2), then

πf (K{n,m}) ≥
⌈

1

m2n(n − 1)
[m(m − 1)n × 2(f + 1) + m2n(n − 1)(2f + 1)]

⌉

=

⌈
2(m − 1)(f + 1)

m(n − 1)

⌉
+ 2f + 1. (1)

b) If f > m(n − 2), then

πf(K{n,m}) ≥⌈
1

m2n(n − 1)
[m(m − 1)n × 2(f + 1) + m2n(n − 1)(1 + 3f − m(n − 2))]

⌉

=

⌈
2(m − 1)(f + 1)

m(n − 1)

⌉
+ 3f − m(n − 2) + 1. (2)

In particular, if m = 2, then we have

πf (K{n,m}) = πf (CP (n)) ≥
⎧⎨
⎩

2f + 2, f ≤ n − 2;
2f + 3, n − 2 < f ≤ 2n − 4;
2f + 4, f = 2n − 3.

(3)
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Similarly, if n = 3, then

πf (K{3,m}) ≥

⎧⎪⎪⎨
⎪⎪⎩

3f + 2, f ≤ m − 2;
3f + 1, f = m − 1;
4f + 1 − m, m ≤ f ≤ 2m − 2;
4f − m, f = 2m − 1.

(4)

Theorem 2.2 Let m be a positive integer and n be a prime power.
(i) For every f = α(n − 1) − 1, α = 1, 2, · · · , m, there is an f -fault tolerant
routing for K{n,m}, which implies that

πf (K{n,m}) =

{
1 + 2f + 2(f+1)

n−1
, if f ≤ m(n − 2);

1 + 3f − m(n − 2) + 2(f+1)
n−1

, if m(n − 2) < f ≤ m(n − 1) − 1.

Furthermore, if f ≤ �n
2
	 − 2 then there is a leveled f -fault tolerant routing,

which implies that πf (K{n,m}) = 2f + 2 for each 0 ≤ f ≤ �n
2
	 − 2.

(ii) There is a leveled f -fault tolerant routing for the Cocktail-party graph
K{n,2} and complete 3-partite graph K{3,m}, which implies that, for any f ≤
2n − 3,

πf (K{n,2}) =

⎧⎨
⎩

2f + 2, f ≤ n − 2;
2f + 3, n − 2 < f ≤ 2n − 4;
2f + 4, f = 2n − 3.

and for any f ≤ 2m − 1,

πf(K{3,m}) =

⎧⎪⎪⎨
⎪⎪⎩

3f + 2 f ≤ m − 2;
3f + 1 f = m − 1;
4f + 1 − m m ≤ f ≤ 2m − 2;
4f − m f = 2m − 1.

Before proving Theorem 2.2, let us introduce some properties related to
Latin square which will play an important role in constructing a leveled routing
for K{n,m}.

A Latin square of order n is a pair (S, F ) where F is a function F :
S × S −→ S such that for any u, w ∈ S, the equation

F (u, v) = w (resp. F (v, u) = w)

has a unique solution v ∈ S. A Latin square is normally written as an n × n
array for which the cell in row u and column v contains the symbol F (u, v). We
say that a Latin square (S, F ) is idempotent if for every u ∈ S, F (u, u) = u.
We say that two Latin squares (S, F1) and (S, F2) are independent if for all
u �= v, F1(u, v) �= F2(u, v).
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Lemma 2.3 [5] Let n = pr be a prime power. Then there exist n−2 mutually
independent idempotent Latin squares. �

Proof of Theorem 2.2 (i). By the existence of n− 2 mutually independent
idempotent Latin squares Fh(i, j), h = 1, 2, · · · , n − 2; i, j ∈ {1, 2, · · · , n}, the
f + 1 internally node disjoint paths connecting any two nodes of different
partition parts can be constructed as below:

A0 = {P0(〈i, s〉, 〈j, t〉) : 〈i, s〉 → 〈j, t〉,
i, j ∈ {0, 1, · · · , n − 1}, i �= j; s, t ∈ {0, 1, · · · , m − 1}}.

If k ≤ m(n − 2), then define

Ak = {Pk(〈i, s〉, 〈j, t〉) : 〈i, s〉 →
〈
F� k

m	(i, j), (s + t + k) mod(m)
〉
→ 〈j, t〉,

i, j ∈ {0, 1, · · · , n − 1}, i �= j; s, t ∈ {0, 1, · · · , m − 1}}.
If m(n − 2) + 1 ≤ k ≤ m(n − 1) − 1, then

Ak = {Pk(〈i, s〉, 〈j, t〉) : 〈i, s〉 → 〈j, (t−k) mod(m)〉 → 〈i, (s+k) mod(m)〉 → 〈j, t〉,
i, j ∈ {0, 1, · · · , n − 1}, i �= j; s, t ∈ {0, 1, · · · , m − 1}}.

On the other hand, for any k, 0 ≤ k ≤ f , let

Bk = {Pk(〈i, s〉, 〈i, t〉) : 〈i, s〉 →〈
(i + k + 1 −

⌊
k

n − 1

⌋
· (n − 1)) mod(n), (F (s, t) +

⌊
k

n − 1

⌋
) mod(m)

〉
→ 〈i, t〉, i ∈ {0, 1, · · · , n − 1}; s, t ∈ {0, 1, · · · , m − 1}; s �= t },

where F (s, t) is the function of an arbitrary idempotent Latin square
({0, 1, · · · , m − 1}, F ).

One can verify that every arc is used exactly once by A0. Furthermore, if
1 ≤ k ≤ m(n − 2) then by the property of mutually independent idempotent
Latin squares, an arc (〈i, s〉, 〈j, t〉) is used by a path Pk(〈α, β〉, 〈α′, β ′〉) if and
only if
1) α = i, β = s, β ′ = t − k − s(modm) and α′ is the unique solution of
F� k

m
�(i, α

′) = j; or

2) α′ = j, β ′ = t, β = s − k − t(modm) and α is the unique solution of
F� k

m
�(α, j) = i.

The above argument means that each arc is used exactly twice by Ak for
k ∈ {1, 2, · · · , m(n − 2)}. Similarly, if m(n − 2) + 1 ≤ k ≤ m(n − 1) − 1
then the arc (〈i, s〉, 〈j, t〉) is used by the paths Pk(〈i, s〉, 〈j, k + t(modm)〉),
Pk(〈i, s − k(modm)〉, 〈j, t〉) and Pk(〈j, t − k(modm)〉, 〈i, s + k(modm)〉) in Ak
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or equivalent to say, each arc is used exactly three times by Ak for k ∈ {m(n−
2) + 1, m(n − 2) + 2, · · · , m(n − 1) − 1}.

On the other hand, for every k = α(n−1)−1, α ∈ {1, 2, · · · , m}, the union
of B0, B1, · · ·, Bk uses every arc exactly 2α or 2α − 2 times. More precisely,
an arc (〈i, s〉, 〈j, t〉) is used 2α − 2 times if and only if s ≤ t ≤ α + s − 1 or
t ≤ s ≤ α + t − 1.

Let Pk = Ak ∪ Bk, k = 0, · · · , f and Rf = {Pk : k = 0, 1, · · · , f}. Then
from the above discussion, for any f = α(n − 1) − 1 and f ≤ m(n − 2), we
have

π(Rf) = 1 + 2f +
2(f + 1)

n − 1
= 1 + 2f +

⌈
2(m − 1)(f + 1)

m(n − 1)

⌉
,

where the last equality holds because f+1
n−1

is an integer less than m. Thus, by
(1), Rf is optimal.

Similarly, for any f = α(n− 1)− 1 and m(n− 2) + 1 ≤ f ≤ m(n− 1)− 1,
we have

π(Rf ) = 1 + 2m(n − 2) +
2(f + 1)

n − 1
+ 3(f − m(n − 2))

= 1 + 3f − m(n − 2) +

⌈
2(m − 1)(f + 1)

m(n − 1)

⌉
.

So by (2), Rf is optimal.
Finally, if f ≤ �n

2
	 − 2 then it is easy to verify that Rk is optimal and

balanced for each k ∈ {0, 1, · · · , f}, which implies that R�n
2
�−2 is leveled.

(ii). Consider firstly the case m = 2. For any k, 0 ≤ k ≤ f ≤ 2n − 3, let Ak

be defined as in (i) and let

Bk = { Pk(〈i, s〉, 〈i, t〉) : 〈i, s〉

→
〈

(i + k + 1 +

⌊
k

n − 1

⌋
) mod(n), (s +

⌊
k

n − 1

⌋
) mod(2)

〉
→ 〈i, t〉, i ∈ {0, 1, · · · , n − 1}; s, t ∈ {0, 1} }.

By the definition of Bk we can verify that each arc is used at most once
by the union

⋃k
i=0 Bi if k ≤ n − 2, or at most twice if n − 1 ≤ k ≤ 2n − 3.

Consequently, if k ≤ n − 2 then

π(Rk) = π({Ai ∪ Bi : i = 0, 1, · · · , k}) = 1 + 2f + 1

and if n − 1 ≤ k ≤ 2n − 3 then

π(Rk) = π({Ai ∪ Bi : i = 0, 1, · · · , k}) = 1 + 2f + 2.
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Combining with (3), the routing Rf = {Ai∪Bi : i = 0, 1, · · · , f} is a leveled
f -fault tolerant routing for K{n,2}.

We now consider the case n = 3. For 0 ≤ k ≤ 2m − 1, let

Bk = {Pk(〈i, s〉, 〈i, t〉) : 〈i, s〉 →
〈

(i + 1 +

⌊
k

m

⌋
) mod(3), (s + t + k) mod(m)

〉

→ 〈i, t〉 i ∈ {0, 1, 2}; s, t ∈ {0, 1, · · · , m − 1} }.
Then for every i, 0 ≤ i ≤ 2m − 1, each arc is used i or i + 1 times by

the union of B0, B1, · · ·, Bi. Similar to the argument as in the case m = 2,
by a direct calculating and combining with (4), we can see that the routing
Rf = {Ai ∪ Bi : i = 0, 1, · · · , f}, f ≤ 2m − 1, is a leveled f -fault tolerant
routing for K{3,m}. This completes our proof. �
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