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Abstract

The f-tolerant arc-forwarding index for a class of complete multi-
partite graphs are determined by constructing relevant fault tolerant
routings. Furthermore, these routings are leveled for Cocktail-party
graph and the complete 3-partite graph.
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1 Introduction

Routing communication demands is one of the fundamental problems in the
area of networking. One of the most recognized recent applications of the prob-
lem is in the area of optical networking[1]. Most of the research concentrates
on determining two invariants of a given optical network-the arc-forwarding
and optical indezes[3]. In [4], fault-tolerant issues of optical networks were
considered and the two invariants were generalized into so called f-tolerant
arc-forwarding and f-tolerant optical indexes. The parameter f represents the
number of faults that are tolerated in the optical networks. To determine the
arc-forwarding index of a network, one has to design a delicate path system
which uses every link in the network evenly.

An all-optical network can be modelled as a symmetric directed graph G
with vertex set V(G) and arc set A(G), i.e. , if (u,v) € A(G) then (v,u) €
A(G). Let P(u,v) denote a directed path from u to v in G. An f-fault tolerant
routing is defined by

R(G) ={Pi(u,v) : (u,v) e V(G) x V(G),u#v,i=0,---, f},
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where for each ordered pair (u,v) € V(G) x V(G) of distinct nodes, the paths
Py(u,v), Pi(u,v), ---, Ps(u,v) are internally node disjoint. As noted in [2],
when links and/or nodes may fail in a network, it is important to establish
connections for a required communication demands, that guarantee fault-free
transmission. Assuming that at most f links/nodes may fail in the network,
the set R;(G) will obviously provide such a routing.

In practical applications the number of different signals a link can carry
is limited. Therefore, the goal is to design a routing which minimizes the
maximum load on arcs. Let 7(R;(G)) denote the maximum load on arcs, that
is, the maximum number of times an arc of G appears in directed paths of
Rf(G) Then

m(G) 7gl(lg)?T(Rf(G))
is called the f-tolerant arc-forwarding index of G.

Consider an f-fault tolerant routing R;(G). We say that a routing Ry
is optimal if its congestion achieves the index 7;(G); and it is balanced if the
difference between congestions of two arcs is at most one. For any i =0,-- -, f,
the level i of the routing R is the set of paths P;(u,v) € Ry for all u # v. It
follows that for any f’ < f, the subrouting R (G) consisting of levels 0, - - -, f’,
is f'-fault tolerant. We say that an optimal balanced routing R(G) is leveled
if every one of its subroutings is also optimal and balanced.

In [4], the optimal and balanced routing R, was constructed for all hy-
percube. Using design theory approach, A. Gupta et al. found the optimal
f-tolerant arc-forwarding indexes for complete graph of a prime power order
[6]. Following this approach, in this paper we determine the f-tolerant arc-
forwarding indexes for the complete multipartite graphs K, (here n is a
prime power) by constructing a fault tolerant routing. Furthermore, for some
f and P (e.g, the Cocktail-party graph), these routings are leveled.

2 Main results

The k-distance dy(u,v) of two vertices u and v is the minimum sums of
lengths of k internally node disjoint paths connecting v and v. In particular,
if £ =1 then d;(u,v) is the usual distance d(u,v).

The following lower bound for 7¢(G) was observed by Gupta et. al.

Lemma 2.1 (A.Gupta, [6]) For any graph G = (V. E) and f < |V|—2

m(G) = |Vﬁ > df+1(u7v)—‘

u,veV
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For two natural numbers n and m, we denote by Ky, ;) the complete
n-partite graph with each partition part containing exactly m vertices. In
particular, if m = 2 then Ky, n,} is known as the Cocktail-party graph C'P(n).
For convenience, in the following the n partition parts of Ky, ) will be labeled
by the O-th, 1-th, ---, and the (n — 1)-th part, respectively. Similarly, the m
vertices in a partition part is labeled by 0, 1, ---,m — 1. Furthermore, we
write the vertex j in the i-th partition part as (i,7), 7 € {0,1,---,n—1},j €
{0,1,---,m —1}.

By the definition of Ky, ,, for two vertices (i, s) and (i,t) with s # ¢, one
can see that every path from (i, s) to (i,t) has length at least 2, and thus we
have dyi1((¢, ), (i,t)) > 2(f + 1). On the other hand, for two vertices (i, s)
and (j,t) with ¢ # j, it can also be observed that there is only one path of
length 1 and exactly m(n — 2) internally node disjoint paths of length 2 which
connect (i, s) and (j,t), respectively. And all other paths have length at least
3. This implies that, if f < m(n —2) then

df+1(<ias>7 <]7 t)) > 2f +1;
and if f > m(n — 2) then
df+1(<i,$>, <]7t>> > 1+3f - m<n_ 2)

Therefore, by Lemma 2.1 we have
a) If f <m(n—2), then

1

m?n(n — 1)

_ F(m - +1)
m(n —1)

7 (K my) > [ [mlm — D) x 2(f + 1) + mn(n — 1)(2f + 1>ﬂ

W+2f+1 (1)

b) If f > m(n—2), then

71-f(l({n,m}) Z

1 2 — —m(n —
[m[m(m —Dnx2(f+1)+m°n(n—1)(1+3f ( 2))]-‘

:{ﬂm—JXf+D
m(n—1)

In particular, if m = 2, then we have

—‘+3f—m(n—2)+1. (2)

2f+2, f<n-—2
Trf(K{n,m}) :Trf(op(n)) > 2f+3, n—2<f<2n—4 (3>
2f +4, f=2n-3.
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Similarly, if n = 3, then

3f+2, f<m-—2
3f+1, f=m-1

T (Ksmy) > Af+1—m, m<f<2m—2: )
4f —m, f=2m—-1

Theorem 2.2 Let m be a positive integer and n be a prime power.
(i) For every f = a(n—1) =1, a = 1,2,---,m, there is an f-fault tolerant
routing for Ky, my, which implies that

14 2f + 2U+0 if f<mn—2);

n—1 7

Wf(K{n,m}): { 1+3f_m<n_2)+%, Zf m(n—2)<f§m(n—1)—1.

Furthermore, if f < [§] — 2 then there is a leveled f-fault tolerant routing,
which implies that 7 (Knmy) = 2f +2 for each 0 < f < [5] — 2.
(ii) There is a leveled f-fault tolerant routing for the Cocktail-party graph
Ky, 9y and complete 3-partite graph Kys,,y, which implies that, for any f <
2n — 3,

2f+2, f<n-—2

ﬂ-f(K{n’Q}): 2f+3, n—2< f<2n-—4;
2f +4, f=2n-3.

and for any f < 2m —1,

3f+2 f<m =2
TR f=m-1

T Esm) = 4ft1—m m<f<om-—2
Af —m f=2m—1

Before proving Theorem 2.2, let us introduce some properties related to
Latin square which will play an important role in constructing a leveled routing
for K {n,m}

A Latin square of order n is a pair (S, F) where F' is a function F :
S x S — S such that for any u,w € S, the equation

F(u,v) =w (resp. F(v,u) = w)

has a unique solution v € S. A Latin square is normally written as an n x n
array for which the cell in row v and column v contains the symbol F'(u,v). We
say that a Latin square (S, F) is idempotent if for every u € S, F(u,u) = u.
We say that two Latin squares (S, F}) and (S, F3) are independent if for all
u# v, Fi(u,v) # Fy(u,v).
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Lemma 2.3 [5] Letn = p" be a prime power. Then there exist n—2 mutually
independent idempotent Latin squares. 0

Proof of Theorem 2.2 (i). By the existence of n — 2 mutually independent
idempotent Latin squares Fy(i,7),h = 1,2,---,n —2;4,j € {1,2,---,n}, the
f + 1 internally node disjoint paths connecting any two nodes of different
partition parts can be constructed as below:

Ao = {P0(<i75>7<j7t>): <i75> - <j7t>7
i,7€{0,1,--- n—1}i1#7j;s,t€{0,1,---,m—1}}.

If £ < m(n —2), then define

A = {Pu((i,5),(5.8) ¢ {ivs) = (Fa(id), (s + ¢+ k) mod(m) ) — (i),

k
i,j€{0,1,--- . n—1}i#j;s,t € {0,1,---,;m—1}}.
Ifmn—-2)+1<k<m(n—1)—1, then

Ak = {Pk:(<27 S>7 <j7 t>) : <7'7 S> - <.]7 (t_k) m0d<m>> - <27 (8+k) mOd(m)> - <j7 t>7
i,7€{0,1,--- . n—1},i# j;s,t € {0,1,---;m —1}}.
On the other hand, for any k, 0 < k < f, let

B = {P.((i,s), (1,t)) : (i,s) —

<(¢+k+1— {nflJ - (n—1)) mod(n), (F(s, t) + {nflJ) mod(m)>

— (i,t),i € {0,1,---;n—1};s,t € {0,1,---,m—1};s#t },

where F(s,t) is the function of an arbitrary idempotent Latin square
({0,1,---,m —1}F).

One can verify that every arc is used exactly once by Ag. Furthermore, if
1 <k < m(n —2) then by the property of mutually independent idempotent
Latin squares, an arc ({i, s), (j,t)) is used by a path P.({a, 3), (/, ) if and
only if
1) a=4ip =3 p =t—Fk— s(modm) and ' is the unique solution of
F%](i,o/) = j; or
2) o =40 =t f=s—k—t(modm) and « is the unique solution of
F(%(oz,j) = 1.

The above argument means that each arc is used exactly twice by A; for
ke {1,2,---,m(n —2)}. Similarly, if m(n —2)+1 < k < m(n—-1) -1
then the arc ((i,s), (j,t)) is used by the paths Py ({3, s), (7, k + t(modm))),
Py({i,s — k(modm)), (j,t)) and Py((j,t — k(modm)), (i, s + k(modm))) in A
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or equivalent to say, each arc is used exactly three times by Ay, for k € {m(n—
2)+1,mn—-2)+2,---,m(n—1)—1}.

On the other hand, for every k = a(n—1)—1, « € {1,2,---,m}, the union
of By, By, ---, By uses every arc exactly 2a or 2a — 2 times. More precisely,
an arc ((i,s), (j,t)) is used 2a — 2 times if and only if s <t < a+s—1or
t<s<a+t-—1.

Let Py = A, UBk,k=0,---,fand Ry = {P, : £k =0,1,---, f}. Then
from the above discussion, for any f = a(n —1) — 1 and f < m(n — 2), we
have

2(f+1) 2(m—1)(f +1)
Re)=1+2 — =142
T(Ry) +2f + 1 +f+[ min—1) ,
where the last equality holds because % is an integer less than m. Thus, by

(1), Ry is optimal.
Similarly, for any f =a(n—1)—land m(n—2)+1< f <m(n—1)—1,
we have

T(Ry) = 1+2m(n—2)+%+3(f—m(n—2))
=1+43f—m(n—2)+ [Q(mm_(y_(];; w :

So by (2), Ry is optimal.

Finally, if f < [§] — 2 then it is easy to verify that R; is optimal and

balanced for each k € {0,1,---, f}, which implies that Rnj_5 is leveled.

(ii). Consider firstly the case m = 2. For any k, 0 < k < f < 2n — 3, let Ay
be defined as in (i) and let

By, ={ Pu((i,s), (i,t)) : (i,s)

- <(i+k—|— 1+ {%J) mod(n), (s + {nﬁlJ) mOd(2)>

— (i,t),i € {0,1,---,;n—1};s,t € {0,1} }.

By the definition of By we can verify that each arc is used at most once
by the union Uf:o B; if k <n—2, or at most twice if n — 1 < k < 2n — 3.
Consequently, if £ < n — 2 then

m(Ry) =m({AUB; :i=0,1,--- k})=1+2f+1
and if n —1 <k < 2n — 3 then
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Combining with (3), the routing Ry = {A,UB; : i =0,1,---, f} is aleveled
f-fault tolerant routing for Ky, o;.
We now consider the case n = 3. For 0 < k <2m — 1, let

Be = {Pu(li,s), (i,t)) : (i, 8) — <(2’+1+ FJ) mod(3), (s +t + k) mod(m)>

m

— (i, t) ie{0,1,2};s,t€{0,1,---,m—1} }.

Then for every i, 0 < i < 2m — 1, each arc is used ¢ or ¢ + 1 times by
the union of By, By, ---, B;. Similar to the argument as in the case m = 2,
by a direct calculating and combining with (4), we can see that the routing
Ry={AUB :i=0,1,---,f},f <2m —1, is a leveled f-fault tolerant
routing for K3 ). This completes our proof. 0
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