
Applied Mathematical Sciences, Vol. 1, 2007, no. 4, 145 - 164

On the Computation of the Hausdorff Metric

between Digitised Images in Three Dimensions

V. Drakopoulos

Department of Informatics & Telecommunications
Theoretical Informatics, University of Athens

Panepistimioupolis 157 84, Athens, Hellas
vasilios@di.uoa.gr

N. Nikolaou

Division of Information Systems
Bank of Greece

341 Mesogeion Ave., 152 32, Cholargos, Hellas
npnikolaou@bankofgreece.gr

Abstract

Efficient and fast solutions to the problem of computing the Haus-
dorff metric between two arbitrary grey-scale, digitised images are con-
sidered. The more efficient of the techniques proposed here considers
the grey-scale attribute of the images as the third dimension. To test
the performance of our methods, we apply them to compare pairs of
monochrome fractal objects as well as to compare real-world images
with the corresponding reconstructed ones.

Mathematics Subject Classification: 62H35

Keywords: fractals, Hausdorff metric, image comparison, computational
geometry

1 Introduction

An interesting class of problems reduces to finding the distance between two
sets of points. The manifestations of this class demonstrate the significance
of the procedure. For finite sets the “closest-pair-between-sets” problem is
solved with the aid of the Voronoi diagram in optimal Θ(n log n) time. When
the points are the vertices either of a simple or of a convex polygon faster

146 V. Drakopoulos and N. Nikolaou

solutions are expected. Atallah in [2] discusses the Hausdorff distance, which is
a well known non-linear operator for comparing discrete sets of points, between
two convex polygons and gives an O(n) time algorithm.

What about real-world images? Neither do they have straight-line edges,
nor are they convex sets or even Euclidean objects. A useful approach to
model these images is using fractal techniques. With these, images are stored
as contraction maps, of which the images are approximate fixed points. Im-
ages are decoded by iterating these mappings to their fixed points. Subse-
quently, the problem provides, for example, a means of testing the efficiency of
fractal-drawing algorithms by comparing the attractor produced with the ac-
tual attractor. Another significant application is in the solution of the so-called
“inverse problem” [5] or “image encoding problem” [10], that is, when a given
image has to be approximated by a suitable iterated function system (IFS)
whose number of affine transformations is the least possible and the attrac-
tor produced is an acceptable approximation of the given image. An efficient
method for comparing digitised images can be applied in pattern recognition,
a scientific area where systematic research has lately brought into light a lot
of promising results; see for example [8] and the references therein. The in-
terest in the field is huge because of the outstanding applications of pattern
recognition in industry, commerce, security, even in everyday life.

The Pythagorean and the city-block metrics have become the two most
widely used distances for the specific comparison of digitised images, even
though the Hausdorff metric is the most natural in comparing objects (see [6])
in an ideal geometric space. Note that the city-block metric is usually much
faster to compute than the Pythagorean and so is sometimes used where speed
is critical but accuracy is not too important. The algorithms of Rosenfeld
& Pfaltz [14] renewed by Gunilla Borgefors [7] work as approximations of
the Euclidean distance (not of the Hausdorff distance) by integer metrics.
In particular, they involve local operations that are performed repeatedly on
every picture element and its immediate neighbors. Huttenlocher et al. in [13],
Rucklidge in [15] and Takács in [20] find the Hausdorff metric attractive for
model-based recognition. In the following, we shall describe two new methods
for the computation of the Hausdorff metric with respect to the Pythagorean
metric between two arbitrary digitised images, one of which is based on the
observation that grey-scale images can be viewed as three-dimensional objects.
The algorithm of Shonkwiler [17] applies only for black-and-white images with
preprocessing using the city-block metric. A linear time minimal memory
algorithm using the city-block metric is given in [18]. One should also note
that according to J. Stark in [19], where he studies the efficiency of an algorithm
for drawing fractal objects, the Hausdorff metric was “ . . . not feasible to be
evaluated . . .” .

Firstly, after outlining some useful notions, we describe a computational

Computation of the Hausdorff metric between digitised images 147

technique and implement two algorithms for computing the Hausdorff metric;
one for black-and-white images and one threshold algorithm, a generalisation
of the first one, to include also grey-scale images. To illustrate the performance
of the first algorithm, we study its behaviour on monochrome fractal objects.
The IFS code used for rendering this class of images is given as well. Next,
we address the issue of computing the Hausdorff metric between grey-scale
digitised images in an efficient manner, which is based on the observation
that grey-scale images can be viewed as three-dimensional objects with their
grey scale as the third dimension. Then, to demonstrate the effectiveness of
the threshold algorithm and of the proposed 3D technique in their entirety,
we apply these methods to find the proximity of an original image to the
corresponding filtered or compressed one. Finally, some conclusions are drawn
along with a discussion of implementation issues.

2 Objective Quality Measurement

A metric space is a set X with a global distance function (the metric ρ) that, for
every two points x, y in X, gives the distance between them as a nonnegative
real number ρ(x, y). A metric space must also satisfy

ρ(x, y) = 0 if and only if x = y;

ρ(x, y) = ρ(y, x);

ρ(x, z) ≤ ρ(x, y) + ρ(y, z),

where x, y, z are any three elements of X. The nonnegative real number ρ(x, y)
is called the distance between x and y. The function ρ itself is called a metric
on the set X. A metric space may be written as a pair (X, ρ), but if the metric
is understood, it will be referred to simply as X.

The most important space for us is the familiar n-dimensional Euclidean
space R

n = {(x1, x2, . . . , xn) : xi ∈ R, i = 1, 2, . . . , n} with the Pythagorean or
root mean square error metric defined by

ρ2(x, y) =

√∑
i

(xi − yi)2,

where x = (x1, x2, . . . , xn) denotes a typical point defined by its coordinates
xi. Meaningful distances can be calculated in other ways. For instance, the
shortest distance from one intersection to another along city streets, assuming
a rectangular grid of two-way streets, is a valid distance measure, that is

ρ1(x, y) =
∑

i

|(xi − yi)|.

148 V. Drakopoulos and N. Nikolaou

It is sometimes called the box, city-block or more justly should be known as
Hippodamean metric, in honour of Hippodamus (5th cen. B.C.), the Militian
architect and town planner, who was the creator of the town-planning system,
in which the construction space is subdivided into lattices. Once we have a
digitised image (made of pixels), our space (of images) is not R

2 any more
and one has to identify a new space X which includes all digitised screens of
resolution M × M pixels.

Let μ be an image and μij be the weight of the (i, j)-th pixel, i.e., for a
black-and-white image μij ∈ {0, 1} whereas in a grey-level one μij ∈ {0, 1, . . . ,
maxcolours − 1}, where maxcolours is the number of available colours. The
simplest approach is to treat the value μij as coordinates of points in R

M2
and

to take the distance between two images μ and ν using either the Pythagorean
or the city-block metric. This gives respectively:

ρ2(μ, ν) =

√∑
(i,j)

(μij − νij)2 =

√∑
i

∑
j

(μij − νij)2

and
ρ1(μ, ν) =

∑
(i,j)

|μij − νij | =
∑

i

∑
j

|μij − νij |.

These two metrics have the advantage that, given μ and ν, they are rela-
tively easy to compute and they are applicable to all kinds of images regardless
of the application. However, it is well known that they often fall short in pre-
dicting the visual (perceptual) quality of an image. By the definition of these
two metrics, one may easily deduce that they can be employed both in the case
of monochrome and coloured images. A black-and-white image can be viewed
as a compact subset in the plane R

2. Yet grey-scale and colour images are
more interesting. Colour images are typical extensions of the grey-scale repre-
sentation of images, since a colour image can be viewed as several grey-scale
images, e.g., as a decomposition of red, green and blue channels. Therefore,
only grey-scale images will be discussed.

Definition 2.1 If H(X) denotes the space whose points are the compact
subsets of X other than the empty set, i.e.,

H(X) = {∅ �= A ⊂ X : A compact},

then the distance between a point x and a subset B ∈ H(X) is given by

d(x, B) = min{ρ(x, b) : b ∈ B}. (1)

The validity of the above definition depends upon the cited minimum actually
existing, but it does, due to compactness. H(X) is called the “space of fractals

Computation of the Hausdorff metric between digitised images 149

BddA)B A)((

AB

Figure 1: The difference between dA(B) and dB(A).

in X” by Barnsley (but note that not all members of H(X) are fractals). The
Hausdorff distance between the points A and B of H(X) is given by

h(A, B) = max{dA(B), dB(A)},

where dB(A) = max{d(x, B) : x ∈ A} and dA(B) = max{d(x, A) : x ∈ B}
(Figure 1). The function dA(B) sometimes is called the directed Hausdorff
distance from A to B.

Theorem 2.2 ([3]) The Hausdorff distance is a metric on H(X).

The following theorem is fundamental in the theory of fractals since one
might then approximate every fractal object through a sequence of compact
subsets of (X, ρ).

Theorem 2.3 ([3]) (X, ρ) is a complete metric space if and only if (H(X), h)
is a complete metric space.

Because of the sensitivity of the Hausdorff metric to degradation such as
noise and occlusions, some Hausdorff-like metrics have been proposed, such as
the modified Hausdorff distance (MHD); see [22] and the references therein.
The directed MHD from B to A is defined by

hMHD(A, B) =
1

Na

∑
a∈A

d(a, B),

where Na denotes the number of points in A.

3 The 2D Algorithmic Approaches

The use of the Hausdorff metric for binary image comparison and computer
vision was originally proposed by Huttenlocher et al. in [13]. As we saw, it
is defined upon the set of all nonempty compact subsets of a metric space

150 V. Drakopoulos and N. Nikolaou

(X, ρ) which is denoted by H(X). In our case, X is the set of the screen
pixels and when its resolution is M × M pixels then X has M2 elements. On
X = {(i, j) : i, j ∈ {1, 2, . . . , M}} the following distance d2: X × X → R can
be defined:

d2((i, j), (i
′, j′)) =

√
(i − i′)2 + (j − j′)2,

for all pixels (i, j), (i′, j′) ∈ X and i, j, i′, j′ ∈ {1, 2, . . . , M}.
The distance function d2 is a metric on X since it is the restriction of the

Pythagorean metric on the discrete space X of the screen pixels. Every subset
of X consists of a finite collection of pixels and hence it is a compact set.
Since the point metric space (X, d2) is well-defined, the Hausdorff metric is
well-defined on the discrete space of screen pixels and, therefore, it suffices to
find a way of computing it.

3.1 The Core Algorithm

If a pixel belongs to both objects, then it naturally does not contribute to
any distance between our objects μ and ν. Let p be a pixel that belongs to
the object ν but does not belong to the object μ. For every such pixel p
one should compute the distance of the pixel from the image μ as in Eq. 1;
in order to accomplish this we initially take the smallest (digitised) square
which is centred at p (see Figure 2) and we examine whether any of the pixels

Figure 2: The smallest (digitised) square which is centred at p.

p1, p3, p5 or p7 belong to the image μ. If this is the case then d({p}, μ) = 1,
since d({p}, A) = min{d({p}, y) : y ∈ A}. If this is not the case we go on
and examine whether any of p2, p4, p6 or p8 belong to μ. In such a case
d({p}, μ) =

√
2; this is Stage 1. If the intersection of μ and the smallest square

centred at p is the empty set then we focus our attention on the next greater
square (always centred at p) which contains 16 pixels (see Figure 3). Again, if
any of p1, p5, p9 or p13 belong to the image μ, then the distance d({p}, μ) = 2; if
none of these belong to μ, then we examine whether this is possible for any of
p2, p4, p6, p8, p10, p12, p14 or p16. If one of them is a pixel of μ, then the distance
of p from μ is

√
22 + 1; otherwise we examine the same hypothesis for p3, p7, p11

or p15 whose distance from p (i.e. d({p}, μ)) is
√

22 + 22; this is Stage 2. The
algorithmic procedure is simplified by the following

Computation of the Hausdorff metric between digitised images 151

Figure 3: The next greater square centred at p used in Stage 2.

Lemma 3.1 If stage ≤ 2, then stage
√

2 ≤ stage + 1.

That is, if a pixel of μ is found in Stage 1 or Stage 2, it is not necessary to
look at the next stage for a pixel of μ closer to p, because in Stages n = 1, 2
the distance is at most n

√
2, while in the next stage it is at least n + 1, which

is greater than n
√

2.

In the unfortunate case where none of the above mentioned cases is true,
we take the next greater square (centred at p) which corresponds to Stage
3. If we find a pixel that belongs to μ its distance from ν is a candidate
hdist. The above mentioned process continues to the next stage until the
candidate distance computed so far is less than the number of stage + 1. This
is because the next stage does not contribute towards a better hdist than the
one already computed. In some cases one might be obliged to take rectangles
instead of squares. This happens when one side of the square examined in the
previous stage has reached the boundaries of the screen and, hence, cannot
become larger towards that side; however, this does not affect the algorithm
since there are other directions that the (former) square can be expanded and,
hence, become a rectangle.

We follow the same procedure for every pixel p′ which belongs to the image
μ but does not belong to the image ν. Since we are always going to compare
nonempty finite sets, the algorithm is bound to terminate in a finite number
of steps.

There are two major factors which affect the number of steps executed
before the termination of the algorithm (and, hence, the time requirements of
the algorithm): the first one is the size of the images compared; the “smaller”
the objects the faster the comparison takes place. The second one is the
similarity between the images compared; the more similar the images are, the
faster the algorithm terminates. This happens because pixels of the screen
that do not belong to either image do not affect the Hausdorff metric between
the objects and therefore are not involved in the process.

152 V. Drakopoulos and N. Nikolaou

The theoretical basis behind the proposed algorithm is that the Hausdorff
metric can be equivalently defined as

dH(μ, ν) = max{max{d({p}, ν) : p ∈ μ}, max{d({p}, μ) : p ∈ ν}}.

Since we found a way to calculate the distances d({p}, ν), p ∈ μ and d({p}, μ), p ∈
ν, then the Hausdorff distance is easily computed.

An analytic formula for the computation of d({p}, μ) is the following:

d({p}, µ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if p ∈ µ
1, if (ip ± 1, jp) or (ip, jp ± 1) ∈ µ and p /∈ µ√

2, if (ip ± 1, jp ± 1) ∈ µ and all the above are false
2, if (ip ± 2, jp) or (ip, jp ± 2) ∈ µ and all the above are false√

5, if (ip ± 2, jp ± 1) or (ip ± 1, jp ± 2) ∈ µ and all the above are false√
8, if (ip ± 2, jp ± 2) ∈ µ and all the above are false

3, if (ip ± 3, jp) or (ip, jp ± 3) ∈ µ and all the above are false√
10, if (ip ± 3, jp ± 1) or (ip ± 1, jp ± 3) ∈ µ and all the above are false√
13, if (ip ± 3, jp ± 2) or (ip ± 2, jp ± 3) ∈ µ and all the above are false√
18, if (ip ± 3, jp ± 3) ∈ µ and all the above are false

...

or, more compactly,

d({p}, µ) =

⎧⎨
⎩

0, if p ∈ µ√
k2 + l2, otherwise, where k ≥ 1 and 0 ≤ l ≤ k are the smallest natural

numbers such that (ip ± k, jp ± l) or (ip ± l, jp ± k) ∈ µ.

This algorithm involves O(h2M ·N) operations for processing M ×N images
which turn out to have Hausdorff distance h.

3.2 A Threshold Algorithmic Extension for Grey-scale
Images

By its definition, the Hausdorff metric can be used only for binary image
comparison. Now that black and white binary images have been compared, this
subsection will address the issue of computing the Hausdorff metric between
grey-scale images. It is well-known that a grey-scale image can be modelled as
a function f(x, y) that gives the grey level at each point (x, y). In accordance
to the previous black and white image representation as a compact subset of
the plane R

2, a third dimension is introduced for the colour information. Hence
X can now be viewed as a compact subset of R

3.
This generalisation is not as easy as it seems. It is impossible to expect

an exact colour matching between the original and the compressed picture. In
order for our algorithm to represent the human perception of visual similarity
a tolerance must be introduced, since the human eye is not that sensitive to
slight color variations. Another issue is the termination of our algorithm. It is

Computation of the Hausdorff metric between digitised images 153

possible that no colour matching may be found inside the predefined tolerance;
thus, the design of the algorithm must cater for this case after the termination
of the search. Also, we must account for possible degenerate cases, such as to
compare a black with a white image, or objects with only one pixel.

To identify the nearest pixel (colour) matching the original one, we assume
that a pixel p = (x, y, t) ∈ Z

3 belongs to both objects, if |t − t′| ≤ τ , for
some preset threshold τ , where p′ = (x, y, t′) is the corresponding pixel of
the second image. Whilst scanning the square, each time the current directed
Hausdorff distance is stored. So, in the unfortunate case where the appropriate
approximate match is not found, the Hausdorff metric is the Haudorff distance
from the farthest (border) pixel. Note that, for τ = 0, we have the Hausdorff
metric for black-and-white images addressed in Subsection 3.1.

4 Application on Fractal Sets

Within Fractal Geometry, the method of iterated function systems introduced
by Hutchinson [12], and popularised by Barnsley [4] and Demko et al. [9], pro-
vides a framework for encoding and generating a large class of fractal images.

The easiest method for rendering a fractal image is with the aid of the
Random Iteration Algorithm, or RIA for short. In the RIA we calculate at each
stage just one new point xn+1 from its predecessor xn, by xn+1 = wi(xn) with
a randomly chosen i from 1, 2, . . . , N . Given a large number of iterations—say
100,000, it works. We refer the interested reader to [3] or [11].

Figure 4: A dendrite, a fern leaf, a spiral, the Sierpiński triangle and a trans-
formed version of it.

The IFS codes for the under-examination fractal objects are presented in
Tables 5–8. The corresponding fractal images are illustrated in Figure 4. The

154 V. Drakopoulos and N. Nikolaou

size of the fractal images considered is 256 × 256 pixels and the number of
iterations is 100,000. Table 1 shows the results of our algorithm with regard to
the city-block, the Pythagorean, the MHD and the Hausdorff distance between
the fractal attractors, as well as the CPU (computation) time tH in min:sec
format of the fourth distance. The computation time of the city-block and the
Pythagorean distance is negligible.

Table 1: The city-block, Pythagorean, MHD and Hausdorff distance between
the fractal objects and the computation times in min:sec format of the fourth
distance.

μ, ν d1 d2 dMHD dH tH t′H
dendrite, spiral 1,719,054 21,060 0.9378 56 00:31 00:10

leaf, spiral 2,286,396 24,287 2.0271 60 01:32 00:30
dendrite, leaf 2,352,186 24,635 1.6558 70 01:16 00:26

dendrite, triangle 3,141,150 28,468 3.0325 82 01:38 00:33
triangle, spiral 2,686,554 26,327 3.3501 90 01:43 00:35
leaf, triangle 3,583,104 30,405 4.5930 121 02:42 00:56

Looking at the values of all the distances we observe that the most dis-
similar objects are the {leaf, triangle} pair, whereas the most similar ones are
the {dendrite, spiral} pair. The former pair has the slowest computation time,
while the latter the fastest. This confirms our observations in Subsection 3.1,
that the more similar the images are the faster our algorithm terminates. The
strength of the Hausdorff metric versus the other metrics for comparing objects
can be seen in the comparison of the pairs {dendrite, triangle} and {triangle,
spiral}. Initially looking at their city-block and Pythagorean distances, one
can be easily led into misperceiving that the latter pair contains the more
similar objects; but their Hausdorff distance is smaller for the first pair, which
shows the correct discrepancy between the two objects. Compare also the
distances between the Sierpiński triangle and the transformed version of it
that arises if we slightly alter its IFS code; taking for example a1 = 0.6, then
d1 = 2, 206, 416, d2 = 23, 859, dMHD = 0.3610 and dH = 18. Although d1 and
d2 suggest, after looking at Table 1, that the two triangles are very different,
dH suggests that they are very close to each other, which is the case.

Another thing that must be mentioned is that the Hausdorff distance is
more stable as compared with the other three metrics. The reason for this is
because its value is independent of the random distribution of the points which
form the attractor. In contrast, the other two metrics depend on the density
of the points which form the invariant measure of the distribution. So, it is
possible two consecutive runnings of the RIA to give us different values for the
d1, d2 and dMHD (but consistent concerning the order), whereas the dH will
be almost the same, with deviation ±1 unit.

Computation of the Hausdorff metric between digitised images 155

5 The 3D Approach: A Generalised Algorithm

for Grey-scale Images

In this section we present a new method for computing the Hausdorff metric
between two grey-scale digitised images, by considering them as 3-dimensional
objects. In our case, X is the set of the screen pixels together with their grey
levels and, when its size is M ×N × P bits, X has M ·N · P elements, where
P is the maximum grey level; hence X = {(i, j, k) : i ∈ {1, 2, . . . , M}, j ∈
{1, 2, . . . , N}, k ∈ {0, 1, . . . , P −1}}. On X the following distance d2: X×X →
R can be defined:

d2((i, j, k), (i′, j′, k′)) =
√

(i − i′)2 + (j − j′)2 + (k − k′)2, (2)

for all pixels (i, j, k), (i′, j′, k′) ∈ X.
The distance function d2 is a metric on X ⊂ R

3 since it is the restriction
of the Pythagorean metric on the discrete space X of the screen pixels. Every
subset of X consists of a finite collection of pixels and hence it is a compact
set. Since any discrete metric space is complete, the Hausdorff metric is well
defined on the discrete space of screen pixels. The algorithm we propose for
computing it is the following.

Let p′ = (i, j, k′) ∈ μ and p = (i, j, k) ∈ ν. If a pixel belongs to both
objects, i.e., if k = k′, then it naturally does not contribute to any distance
between our objects μ and ν. Let p be a pixel that belongs to the object ν
but does not belong to the object μ, i.e., k �= k′. Then |k − k′| is stored as a
candidate distance, i.e., we set as TempHausdorff = |k − k′|. For every such
pixel p one should compute the distance of the pixel from the image μ according
to Eq. (1); in order to accomplish this we initially take the smallest (digitised)
square which is centred at p and we examine whether its distance from any of its
eight neighbouring pixels is less than TempHausdorff; in such a case we assign
the new value to TempHausdorff and the first examination level is completed.
Furthermore, we take the next greater square (centred at p) and we continue
until either we reach the boundary of the image or, at some examination level,
d2((i, j, k), (i′, j′, k′)) > TempHausdorff. We follow the same procedure for
every pixel p′ which belongs to the image μ but does not belong to the image
ν. The maximum value of TempHausdorff that results from both procedures
mentioned above is the actual Hausdorff distance. Since we are always going
to compare nonempty compact sets, the algorithm is bound to terminate in a
finite number of steps. Table 1 also shows the CPU (computation) time t′H in
min:sec format of the 3D Hausdorff distance mentioned above; it is almost one
third of tH !

When X is a bounded subset of R
3, it has an obvious interpretation as a

grey-scale image and can be used to yield colour images either by a suitable
colour map coding or by the superimposition of three such measures. We use

156 V. Drakopoulos and N. Nikolaou

the Hausdorff distance to examine the effect of a compression method on the
original image.

6 Application on Grey-scale Images

Most digital-image-compression methods required in real-world applications
are lossy compression methods, i.e., the decompressed images must be visually
similar, not necessarilly identical, to the original images. So, there is always a
tradeoff between the compression ratio and the reconstruction error. We now
present typical results from the application of our algorithm to real imagery,
aiming to demonstrate its applicability to the demanding problems inherent
in the image compression area and its performance. The original images used
as our reference point in the experiments presented here are the 256× 256× 8
bits Lena and Barbara images shown in Figure 5.

Figure 5: The original images of Lena (left) and Barbara (right) used in our
experiments (256 × 256 × 8 bits).

We examine for each original image how close it is to a filtered or com-
pressed replica of it. In other words we seek to measure the difference (i.e. the
error) between two images by computing the Hausdorff distance between the
original image and each of the associated filtered ones.

The filter banks used in our simulations include the lifting scheme (Fig-
ure 6), which represents a generic and efficient solution to the perfect inver-
sion problem, the Haar filter as well as the (9,7) pair developed by Antonini
et al. [1] (Figure 7). We have also tested the performance of our scheme to a
Joint Photographic Experts Group (JPEG) codec in its Corel 7 implementa-
tion, as applied to our test images and to images compressed with the EZW
method [16]. The Embedded Zerotree Wavelet, or EZW for short, is a rea-
sonable algorithm in modern image compression to use for experiments (see

Computation of the Hausdorff metric between digitised images 157

Figure 6: 256×256×8 bits test image used in our experiments (lifting scheme
is used).

[21]). The EZW algorithm is a particularly effective approach to the following
two-fold problem: achieving the best image quality for a given compression
ratio (bit-rate) and encode the image in such a way that all lower bit-rate
encodings are embedded in the beginning of the final bit stream. The symbol
stream generated by EZW is entropy (losslessly) encoded to achieve further
compression.

Table 2: The city-block, Pythagorean and Hausdorff distance between the
256 × 256 × 8 bits 3D real-world images and the computation time in min:sec
format of the third distance.

d1 d2 dH t′H
μ, μ1 0 0 0 00:00
μ, μ2 1,082 34 2 00:00
μ, μ3 8,657 95 2 00:00
μ, μ4 300,320 1,669 27 00:04
μ, μ5 366,095 2,002 31 00:06
ν, ν1 694,055 4,229 46 00:09
ν, ν2 893,458 4,701 55 00:19

For the image of Lena we used the filter banks as well as the compression
schemes mentioned above. For the image of Barbara we used only the com-
pression schemes. Figure 8 shows compressed images of Lena at a ratio of 32:1
using (9,7) Discrete Wavelet Transform (DWT) combined with Run-Length
Encoder (RLE) and JPEG coding respectively. Figure 9 shows compressed
images of Barbara at a ratio of 64:1 using (9,7) DWT combined with RLE and

158 V. Drakopoulos and N. Nikolaou

(a) (b)

Figure 7: 256×256×8 bits test images used in our experiments ((a) Haar and
(b) Antonini (9,7) filters are used).

Table 3: The Hausdorff distance dH between the 256× 256× 8 bits real-world
images with respect to different values of the threshold τ .

dH\τ 0 5 10 15 20 25 30
μ, μ1 0 0 0 0 0 0 0
μ, μ2 56 0 0 0 0 0 0
μ, μ3 160 0 0 0 0 0 0
μ, μ4 362 362 60 26 25 24 24
μ, μ5 362 362 362 362 362 362 25
ν, ν1 362 362 362 362 96 75 75
ν, ν2 362 362 362 362 362 109 106

JPEG coding respectively.
Table 2 shows the city-block and the Pythagorean distances between the

real-world images. Table 3 shows the results of the threshold algorithm with
regard to the Hausdorff distance between the real-world images with respect to
the threshold value. Table 4 shows the CPU (computation) time of the third
distance in min:sec format with respect to different values of the threshold.
The correspondence between the images of Lena and the indices is the follow-
ing: μ = original image, μ1 = lifting scheme, μ2 = Antonini filter, μ3 = Haar
transform, μ4 = 32:1 compression and μ5 = JPEG compression. The corre-
spondence between the images of Barbara and the indices is the following: ν =
original image, ν1 = 64:1 compression and ν2 = JPEG compression.

There are two ways to examine Tables 2–4: vertically and horizontally.
Looking at Tables 2 and 3 from top to bottom we can see, which of the im-

Computation of the Hausdorff metric between digitised images 159

(a) (b)

Figure 8: 256 × 256 × 8 bits test images used in our experiments ((a) EZW
Shapiro (9,7) and (b) JPEG compression are used).

Table 4: The computation time tH in min:sec format of the Hausdorff distances
between the 256×256×8 bits real-world images in relation with different values
of the threshold τ .

tH\τ 0 5 10 15 20 25 30
μ, μ1 00:00 00:00 00:00 00:00 00:00 00:00 00:00
μ, μ2 00:00 00:00 00:00 00:00 00:00 00:00 00:00
μ, μ3 00:11 00:00 00:00 00:00 00:00 00:00 00:00
μ, μ4 01:30 00:07 00:02 00:01 00:01 00:01 00:01
μ, μ5 05:22 00:39 00:15 00:06 00:02 00:01 00:01
ν, ν1 03:17 00:44 00:24 00:13 00:08 00:05 00:03
ν, ν2 21:27 03:05 01:41 01:07 00:33 00:05 00:03

ages are closer to the originals. Some extreme cases are possible because, by
definition, the Hausdorff metric is not robust under noise. A single “wrong”
pixel can make it very high. In this case, it is better to view the table from
left to right in order to conceive the total behaviour of the distance via the in-
creasing value of the threshold used for these degenerate cases. Table 4, which
shows the computation times, is more consistent because the extreme cases are
not capable of affecting the whole time spent for computing the particularly
distances. Hence, the computation time can be considered as an empirical
measure for the similarity of the compared images.

Table 2 also shows the results of the generalised algorithm with regard to
the Hausdorff distance between the real-world images and its CPU (computa-
tion) time in min:sec format. Looking at all the pictures of Lena and Barbara
it is not possible to observe at once all of their differences or defects, except for
the figures compressed using JPEG. With the help of the Hausdorff distance it

160 V. Drakopoulos and N. Nikolaou

(a) (b)

Figure 9: 256 × 256 × 8 bits test images used in our experiments ((a) EZW
Shapiro (9,7) and (b) JPEG compression are used).

is now possible to look “behind” these images and unveil their imperfections.
Looking at Table 2 from top to bottom we can see, which of the images are
closer to the originals. Compare also the computation times in Table 4 (for
τ = 0) with those in Table 2. The generalised algorithm is really faster!

7 Conclusions and Extensions

The current implementation of our algorithms is developed using Microsoft
Visual Basic 6.0 and is capable of drawing two fractal, or open two bitmapped,
images as well as to compute their city-block, Pythagorean, Hausdorff and
modified Hausdorff metrics. The CPU time needed for their computation is
also displayed. There exist also a window in which one can see the discrepancy
between the two under comparison images 1. The whole algorithm was finally
tested and rated by computing the distance between attractors produced using
the RIA, as well as between grey-scale original and transformed real-world
images. Time results are given in CPU minutes on an Intel(R) Pentium(R) M
processor 1700 MHz 1.69 GHz, 512 MB of RAM running Microsoft Windows
XP Professional Version 2002 SP 2.

In the case of the fractal images the non-blank (the non background color)
pixels (of the fractal image) are known due the method used for their construc-
tion out of the IFS code. This observation, which holds for both images, heavily
simplifies the number of calculation required for the computation of the Haus-
dorff distance. More analytically, for the computation of dA(B) we take into
account only the non-blank points of image A. Moreover, during the ‘spiral’

1Please visit cgi.di.uoa.gr/∼vasilios/Hausdorff.exe

Computation of the Hausdorff metric between digitised images 161

process for the computation of d(x, B) we only take into account the non-blank
pixels of image B. Conversely, during the computation of dB(A), d(y, A) we
disregard the pixels of B and A, respectively, that are blank (i.e. not colored).
As it is evident, the aforementioned procedure can be applied in both black &
white and grey-scale fractal images.

In the case of digitized images that do not come from IFS code, (e.g. real
world images), we are mainly interested in measuring their similarity. While
comparing similar images, our algorithm efficiently computes their Hausdorff
distance. In the opposite case of dissimilar images, our algorithm quickly
yields a lower bound of their Hausdorff distance from the very first iterations;
this bound can be considered as a measure of their dissimilarity helping us to
quickly judge that the two pictures are not alike.

When our algorithms for the computation of the Hausdorff metric are im-
plemented using conventional single-processor machines, their computation
time is close to the one needed for the computation of the Pythagorean or
the city-block distance, which is fairly satisfactory (see Table 2 or Table 4).
This result holds under the proviso that relatively “close” images are com-
pared, as in the case of the Collage Theorem for fractal objects. The same
result holds also for the grey-scale real-world images and is the case for the μ1,
μ2 and μ3 images as compared with the original image of Lena. The proposed
generalised method can be extended to images with more than one channels,
such as RGB or CMYK. In each such instance, it suffices to add one extra
dimension to our space X for each channel.

Appendix

A transformation w is affine, if it may be represented by a matrix A and
translation t as w(x) = Ax + t, or (if x ∈ R

2)

w

[
x
y

]
=

[
a b
c s

] [
x
y

]
+

[
d
e

]
.

The code of w is the 6-tuple (a, b, c, s, d, e), and the code of an IFS is a table
whose rows are the codes of w1, w2, . . . , wN . If we add one extra column with
the corresponding probabilities p1, p2, . . . , pN , then we are talking about the
code of an IFS with probabilities.

We list the IFS codes (see Tables 5–8) for the examples discussed in the
main text.

ACKNOWLEDGEMENTS. The authors wish to thank Aliki Vassila-
rakou, Ph.D. student of the Department of Informatics & Telecommunications,
for her help in the compressed images presented here.

162 V. Drakopoulos and N. Nikolaou

Table 5: The IFS code for a dendrite.
w a b c s d e p
1 0.5 0 0 0.5 0.0625 0.15 0.25
2 0.21 -0.20625 0.528 0.21 0.789 0 0.5
3 0.5 0 0 0.5 0.375 0.375 0.75
4 -0.2 0.1125 -0.288 -0.2 0.609 0.975 1

Table 6: The IFS code for a fern leaf.
w a b c s d e p
1 0 0 0 0.16 0.5 0.07 0.001
2 0.2 -0.195 0.3066667 0.22 0.41625 0.045 0.071
3 -0.15 0.21 0.3466667 0.24 0.5575 -0.07333 0.141
4 0.85 0.03 -0.5333 0.85 0.07249999 0.1725 1

References

[1] M. Antonini, M. Barlaud and P. Mathieu, Image coding using wavelet
transform, IEEE Trans. Image Process., 1 (1992), 205–220.

[2] M.J. Atallah, A linear time algorithm for the Hausdorff distance between
convex polygons, Info. Proc. Lett., 8 (1983), 207–209.

[3] M.F. Barnsley, Fractals everywhere, 2nd ed., Academic Press Professional,
San Diego, 1993.

[4] M.F. Barnsley and S. Demko, Iterated function systems and the global
construction of fractals, Proc. Roy. Soc. London, Ser. A, 399 (1985),
243–275.

[5] M.F. Barnsley, V. Ervin, D. Hardin and J. Lancaster, Solution of an
inverse problem for fractal and other sets, Proc. Nat. Acad. Sci. U.S.A.,
83 (1986), 1975–1977.

[6] E. Belogay, C. Cabrelli, U. Molter and R. Shonkwiler, Calculating the
Hausdorff distance between curves, Inform. Process. Lett., 64 (1997), 17–
22.

Table 7: The IFS code for the Sierpiński triangle.
w a b c s d e p
1 0.5 0 0 0.5 0 0 0.33
2 0.5 0 0 0.5 0.5 0 0.67
3 0.5 0 0 0.5 0.25 0.433 1

Computation of the Hausdorff metric between digitised images 163

Table 8: The IFS code for a spiral.
w a b c s d e p
1 -0.18 0.126 -0.2571 -0.18 0.815 0.8485 0.05
2 -0.8 0.4 -0.4 0.8 -0.088 0.2514 1

[7] G. Borgefors, Distance transformations in digital images, Computer, Vi-
sion, Graphics and Image Processing, 34 (1986), 344–371.

[8] B.B. Chandhuri and A. Rosenfeld, A modified Hausdorff distance between
fuzzy sets, Inform. Sci., 118 (1999), 159–171.

[9] S. Demko, L. Hodges and B. Naylor, Construction of fractal objects with
iterated function systems, Comput. Graph., 19 (3) (1985), 271–278.

[10] Y. Fisher, editor, Fractal image compression, Springer-Verlag, New York,
1995.

[11] S.G. Hoggar, Mathematics for computer graphics, Cambridge Univ. Press,
London and New York, 1992.

[12] J.E. Hutchinson, Fractals and self similarity, Indiana Univ. Math. J., 30
(1981), 713–747.

[13] D.P. Huttenlocher, G.A. Klanderman and W.J. Rucklidge, Comparing
images using the Hausdorff distance, IEEE Trans. Pattern Anal. Machine
Intelligence, 15 (1993), 850–863.

[14] A. Rosenfeld and J. Pfaltz, Distance functions in Digital Pictures, Pattern
Recognition, 1 (1968), 33–61.

[15] W. Rucklidge, Efficient visual recognition using the Hausdorff distance,
Springer-Verlag, Berlin and Heidelberg, 1996.

[16] J.M. Shapiro, Embedded image coding using zerotrees of wavelet coeffi-
cients, IEEE Trans. Signal Process., 41 (1993), 3445–3462.

[17] R. Shonkwiler, An image algorithm for computing the Hausdorff distance
efficiently in linear time, Inform. Process. Lett., 30 (1989), 87–89.

[18] R. Shonkwiler, Computing the Hausdorff set distance in linear time for
any Lp point distance, Inform. Process. Lett., 38 (1991), 201–207.

[19] J. Stark, Iterated function systems as neural networks, Neural Networks,
4 (1991), 679–690.

164 V. Drakopoulos and N. Nikolaou

[20] B. Takács, Comparing face images using the modified Hausdorff distance,
Pattern Recognition, 31 (1998), 1873–1881.

[21] M. Vetterli and J. Kovačevic̀, Wavelets and subband coding, Prentice-Hall,
Englewood Cliffs, NJ, 1995.

[22] C. Zhao, W. Shi, and Y. Deng, A new Hausdorff distance for image match-
ing, Pattern Recognition Lett., 26 (2005), 581–586.

Received: July 13, 2006

