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Abstract

Based on the recent result given in Park [19], a further result for
global asymptotic stability of the equilibrium point for a class of uncer-
tain neural networks with discrete and distributed delays is investigated.
A stability condition is derived in terms of linear matrix inequalities
(LMIs), which can be solved easily by various convex optimization al-
gorithms.
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1 Introduction

During the last decade, neural networks have been applied to various signal
processing problems such as optimization image processing, content-addressable
memory, associative memory design, fixed point computation, pattern classi-
fication, and so on. Such applications heavily rely on the dynamic behavior
of the networks. Hence the analysis of these dynamics is necessary for prac-
tical design of neural networks. So far numerous works on global asymptotic
stability of equilibrium of the networks have been extensively studied [1-4].
On the other hand, it has been well recognized that time delays are often en-
countered in various neural networks, and the delays are often the sources of
oscillations, instability and poor performance of the networks [5-12]. It is no-
ticed that most works about delayed neural networks have focused on discrete
delays. However, neural networks usually have a spatial extent due to the
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presence of a multitude of parallel pathways with a variety of axon sizes and
lengths. Therefore, there will be a distribution of conduction velocities along
these pathways and a distribution of propagation delays [13]. In recent years,
the problem of stability analysis for various neural networks with distributed
delays is investigated by the researchers [14-17].

In this paper, the recent result in [19] will be extended to uncertain neural

networks with continuously distributed delays. The derived condition is ex-
pressed in terms of two linear matrix inequalities (LMIs) which can be solved
numerically very efficiently by resorting to recently developed standard algo-
rithms such as interior-point methods, and no tuning of parameters will be
involved [18].
Notation: Throughout this paper, R"™ denotes the n dimensional Euclidean
space, and R™ "™ is the set of all n x m real matrices. I denotes the iden-
tity matrix with appropriate dimensions. | - || denotes the Euclidean norm of
given vector. x denotes the elements below the main diagonal of a symmetric
block matrix. diag{---} denotes the diagonal matrix. For symmetric matrices
X and Y, the notation X > Y (respectively, X > Y') means that the matrix
X — Y is positive definite, (respectively, nonnegative).

2 Main Results

Consider a continuous time-delayed neural network which is described by the
following nonlinear retarded functional differential equations:

(t) = —(C+AC)z(t)+ (W +AW)f(x(t) + (A+ AA)f(z(t — h))
+(B+ AB) / K(t—s)f(x(s))ds, (1)
where z(t) = [z1, T, - -+, x,]T € R" is the state vector at time ¢,

C = diag{ci,co, - ,cn} € R™™ > 0 denotes the passive decay rate, W =
diag{wy,wq, - - ,w,} € R™" is the feedback term, A = [a;;] € R™", B =

[bij] € R™*™ are the synaptic connection strengths, f = [fi(x1), fa(z2), -+, fu(zn)]”
denotes the neuron activations, h > 0 is the discrete transmission delay from

one neuron to another, and the delay kernel K (t — s) = diag{k;(t — s), ka(t —

), -+, ky(t — s)} is a real value non-negative continuous function defined on

0, 00) satisfying

/00 kij(s)ds =1, Vi. (2)

Also, AA, AWy, AWy, AW, are the uncertainties of system matrices of the
form:

[ AC AW AA AB|=HF(t)|E E, Ey E,], (3)
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where H, F/, Ey, 1, E5 are known constant matrices of appropriate dimensions
and the time-varying nonlinear function F'(t) satisfy

F't)F(t)<IforVteR. (4)

In this paper, it is assumed that the neuron activation functions are bounded
and satisfies the following property:

|f](‘rj(t))| < lj|xj(t))‘7 J=12--n. (5>

By employing the well-known Brouwer’s fixed point theorem, note that one
can easily prove that there exists an equilibrium point for system (1).

Before presenting the main results, we give the the following facts and
lemma.
Fact 1. (Schur complement) Given constant symmetric matrices %1, ¥, 3
where ¥} = X7 and 0 < ¥y = X7 then ¥; + XI'%;'%5 < 0 if and only if

¥, X7 —Yp X3
{23 _22]<O, or [E3T 5, < 0.

Fact 2. For any 2,y € R™ and a positive scalar €, the following inequality
2Ty < etz 4+ e lyly

holds.

Lemma 1. [19] For given L = diag{ly,ls,--- ,l,}, the equilibrium point 0
of (1) without uncertainties, i.e., AC = AW = AA = AB = 0, is globally
asymptotically stable if there exist positive definite matrices P, @), Z, X, posi-
tive diagonal matrices E = diag{e, s, - ,e,} D = diag{d;,ds,--- ,d,} and
Y > 0, satistying the following two LMIs:

I, PW PA+YT PB —-nC?"Z

* Il DA DB wWTZz

II = * * 115 0 hATZ < 0, (6)
*  x * —FE hBTZ
* * * * —hZ

X Y
r= [ < ] >0, (7)
where
I, = -DCL'—L'CD+DW+W'D+Q+FE

; = —Q+hX-YL ' —L7'YT
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Now, we give a sufficient condition for the global asymptotic stability of
the equilibrium point for the neural network (1) based on Lemma 1.
Then, we have the following theorem.
Theorem 1. The equilibrium point 0 of system (1) is globally asymptotically
stable if there exist positive definite matrices P, (), Z, X, two positive diagonal
matrices D, E, three positive scalars €;(i = 1,2,3), and Y > 0, satisfying the
following two LMIs:

DN ( fz/)'l%(& ) Y5 X9 —hATZ PH 0 0
* 22 24 28 hW(")rZ 0 DH 0
* * Yy Xr WWEZ 0 0 0
* * x B¢ WWIZ 0 0 0 | <08)
* * * % —hZ 0 0 ZH
* * * % * —el 0 0
* * * % * * —eo ] 0
| x * * ok * * *  —e3l |
XY
[ * J ] 20, 9)
where
¥ = —PC—CP+ (e, +e3)E'E,
Y = —DCL '~ L 'CD+DW+W'D+Q+E+ (e +e3)Eq Ey
+e(—L'ET + ETY(=EL™' + E),
Y3 = —Q+hX YL ' -~ LY+ (e + e+ e3)ETEy,

Yy = DA+ (a1 +e)ElEl+ e(—~L'E" + E})E\,

Y5 = PA+Y' — (e, +e)ETE,

Y6 = —E+ (€4 e+ e3)ELEy,

Y7 = (e14+e+ €3)E?E2,

Y = DB+ (e +e)El By +e(—L'ET + ENE,,

Y9 = PB—(e1+e)E"E,. (10)
Proof. By Lemma 1, the system is globally asymptotically stable if the in-
equality (9) and the following inequality hold

T4 20, F()QF + 2Q3 F (1)1 + 205 F (1) < 0, (11)
where
PH —ET 0
0 o DH
Ql == O y QQ == ElT ,Qg == O 5
0 ET 0
0 0 0
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0 0 _ET
L'ET + ET 0 ET
Q= ET ., QB=h| 0 |, Qs=| ET
ET 0 By
0 ZH 0

By Fact 2, Eq. (11) holds if the following inequality satisfies

I+ 6 007 + 6008 + 6000 + 00T + 610507 + Q607
=11+ Q<0, (12)

where ¢; > 0,7 =1,2,3, and

(1, ].) —(61 + €3)ETE0 (]_, 3) —<€1 + 63)ETE2 0
’ 22 23 @9 0
0= * * 3,3) (3,4) 0 ,
* * * (4,4) 0
* * * * (5,5)

(1,1) = ¢, 'PHH" P 4 (e, + €3)ETE,
(1,3) = —(e + e3) ETEy,

(2,2) = ;' DHH"D + (€, + €3) E Ey + eo(—L'E" + ED)(—EL™' + Ey),
(2,3) = (61 + &) El By + eo(—L'ET + ENE,

(2,4) = (61 + &) El By + eo(—L'ET + ED)E,,

(3,3) = (61 + €2 + e3) ET Ey,

(3,4) = (61 + &2+ e3) ET s,

(4,4) = (€1 + €2 + 63)E2TE2,

(5,5) =€

Using the relationship (10), the inequality IT + Q < 0 is equivalent to

[ (Y +€e'PH PW — (¢ ]
( xHTP ) (+63)ETEO) Yo Yo —hATZ
* o+ 6 'DHH'D v, S  WWlZ
" " Y O AWIZ <0
* * x Y Wiz
i * * x  x —hZ+(5,5) |
(13)

Then, by Fact 1, the inequality given (13) is equivalent to the LMI (8). Thus,
if the LMIs given in (8) and (9) hold, the equilibrium point of system (1) is
globally asymptotically stable in the sense of Lemma 1. This completes our
proof. [ |
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Remark 1. The criterion given in Theorem 1 is delay-dependent with respect
to h. It is well known that the delay-dependent criteria are less conservative
than delay-independent criteria when the delay is small. The solutions of
Theorem 1 can be obtained by solving the eigenvalue problem with respect to
solution variables, which is a convex optimization problem [18].

3 Concluding remarks

We have further studied the stability property of a class of uncertain neural
networks with continuously distributed delays based on the recent work [19].
A new delay-dependent criterion on global asymptotic stability of the neural
networks. The condition is formulated in terms of LMIs, which is solved by
various convex optimization algorithms.
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