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Abstract. Let E be a real reflexive Banach space which admits a weakly
sequentially continuous duality mapping from E to E∗, and K be a nonempty
closed convex subset of E. Suppose that T, S : K → K are two nonexpansive
mappings such that F := F (ST ) = F (T ) ∩ F (S) �= ∅. For arbitrary initial
value x0 ∈ K and fixed anchor u ∈ K, define iteratively a sequence {xn} as
follows: {

yn = βnxn + (1 − βn)Txn

xn+1 = αnu + (1 − αn)Syn, n ≥ 0,

where {αn}, {βn} ⊂ [0, 1] satisfies proper conditions. We prove that {xn}
converges strongly to PF u as n → ∞, where PF is a unique sunny nonexpansive
retraction of K onto F . Also we prove that the same conclusions still hold in
a uniformly convex Banach space with uniformly Géteaux differentiable norm
or uniformly smooth Banach spaces. Our results extend and improve the
corresponding ones by Tae-Hwa Kim and Hong-Kun Xu [Strong convergence
of modified Mann iterations, Nonlinear Anal. 61(2005) 51-60].
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formly Géteaux differentiable norm

1Corresponding author. email: lwl@hpu.edu.cn, songyisheng123@yahoo.com.cn



98 Shengju Yang and Y.S. Song

1. Introduction

Let K be a nonempty closed convex subset of a Banach space E and let
T, S be two nonexpansive mappings from K into itself (recall that a mapping
T : K → K is nonexpansive if ‖Tx− Ty‖ ≤ ‖x − y‖ ∀x, y ∈ K), {αn}, {βn}
is two sequences in [0, 1]. In 1953, Mann [6] introduced the following iterative
procedure in Hibert space: for x0 ∈ K,

(1.1) xn+1 = αnxn + (1 − αn)Txn, n ≥ 0.

Later Reich [10] studied this iterative procedure (1.1) in a uniformly convex
Banach space whose norm is Fréchet differentiable and obtained that if T

has a fixed point and
∞∑

n=0

αn(1 − αn) = ∞, then the sequence {xn} converges

weakly to a fixed point of T . A generalization of Mann iterative schemes was
given by Takahashi and Tamura [5]. This scheme dealt with two nonexpansive
mappings:

(1.2)

{
xn+1 = αnSyn + (1 − αn)xn

yn = βnTxn + (1 − βn)xn, n ≥ 1.

S.H. Khan and H. Fukhar-ud-din [3] further generalize the iteration scheme
(1.2) to the one with errors.

In 1967, Halpern [12] firstly introduced the following iteration scheme: for
nonexpansive mappings T and y, x0 ∈ K,

(1.3) xn+1 = αny + (1 − αn)Txn, n ≥ 0.

He pointed out that the control conditions limn→∞ αn = 0 and
∑∞

n=1 αn = ∞
are necessary for the convergence of the iteration scheme (1.3) to a fixed point
of T . Later, many authors studied the iteration scheme (1.3), for instance, see
[4, 13, 15, 19].

Recently, Y. Kimura, W. Takahashi and M. Toyoda [9] studied the following
iterative scheme for two nonexpansive mappings T, S in a uniformly convex
Banach space with uniformly Géteaux differentiable norm. For x0, u ∈ K

(1.4)

{
xn+1 = αnu + (1 − αn)yn

yn = βnSxn + (1 − βn)Txn, n ≥ 0.

At the same time, Tae-Hwa Kim and Hong-Kun Xu [2] dealt with the follow-
ing iterative scheme for one nonexpansive mapping T in a uniformly smooth
Banach space. Forx0, u ∈ K,

(1.5)

{
xn+1 = αnu + (1 − αn)yn

yn = βnxn + (1 − βn)Txn, n ≥ 0.

In this paper, motivated by Tae-Hwa Kim and Hong-Kun Xu[2] and S.H.
Khan and H. Fukhar-ud-din[3] and Y. Kimura, W. Takahashi and M. Toyoda[9],
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we consider the following the following iterative scheme (1.6) for two nonex-
pansive mappings S, T . For x0, u ∈ K,

(1.6)

{
xn+1 = αnu + (1 − αn)Syn

yn = βnxn + (1 − βn)Txn, n ≥ 0.

We will prove several strong convergence results in a reflexive Banach space
E which admits a weakly sequentially continuous duality mapping J from
E to E∗ or in a uniformly convex Banach space E with uniformly Géteaux
differentiable norm or in a uniformly smooth Banach space E.

2. Preliminaries

Throughout this paper, it is assumed that E is a real Banach space with
norm ‖·‖, and let J denote the normalized duality mapping from E into 2E∗

given by

J(x) = {f ∈ E∗, 〈x, f〉 = ‖x‖ ‖f‖ , ‖x‖ = ‖f‖}, ∀ x ∈ E,

where E∗ denotes the dual space of E and 〈·, ·〉 denotes the generalized duality
pairing. In the sequel, we shall denote the single-valued duality mapping by
j, and denote F (T ) = {x ∈ E; Tx = x}. When {xn} is a sequence in E,

then xn → x(respectively xn ⇀ x, xn
∗
⇀ x)will denote strong (respectively

weak, weak∗) convergence of the sequence {xn} to x. In Banach space E, the
following result (the Subdifferential Inequality) is well known (Theorem 4.2.1
of [16]). ∀x, y ∈ E, ∀j(x + y) ∈ J(x + y),

(2.1) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉.
Let E be a real Banach space and T a mapping with domain D(T ) and

range R(T ) in E. T is called (respectively, contractive) nonexpansive if for any
x, y ∈ D(T ), such that

‖Tx− Ty‖ ≤ ‖x − y‖ ,

(respectively, ‖Tx− Ty‖ ≤ β ‖x − y‖ for some 0 < β < 1.)

Recall that a Banach space E is said to be smooth, if the limit

(2.2) lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x, y on the unit sphere S(E) of E. In this case, the duality
mapping J is strong-weak∗ continuous (Lemma 4.3.3 of [16]). Moreover, if for
each y in S(E) the limit defined by (2.2) is uniformly attained for x in S(E),
we say that the norm of E is uniformly Gâteaux differentiable. A Banach
space E is said to uniformly smooth, if the limit (2.2) is attained uniformly
for (x, y) ∈ S(E)× S(E). A Banach space E is said to uniformly convex if its
dual space E∗ is uniformly smooth.

It is well known that the (normalized) duality mapping J(x) (∀x ∈ E) is
single-valued if and only if E is smooth (Theorem 4.3.1 and theorem 4.3.2 of
[16]). If E has a uniformly Gâteaux differentiable norm, then the (normalized)
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duality mapping J : E −→ E∗ is norm to weak∗ uniformly continuous on
bounded sets of E (Theorem 4.3.6 of [16]). Every uniformly smooth Banach
space E is a reflexive Banach space with uniformly Gâteaux differentiable
norm, and the (normalized) duality mapping J : E −→ E∗ is single-valued
and norm to norm uniformly continuous on bounded sets of E (Theorem 4.3.4
and Theorem 4.3.7 of [16]).

If C are nonempty convex subsets of a Banach space E and D is nonempty
subset of C , then a mapping P : C → D is called a retraction if P is continuous
with F (P ) = D. A mapping P : C → D is called sunny if

P (Px + t(x − Px)) = Px, ∀x ∈ C

whenever Px+t(x−Px) ∈ C and t > 0. A subset D of C !!is said to be a sunny
nonexpansive retract of C if there exists a sunny nonexpansive retraction of C
onto D. For more details, see [7, 8, 16]. The following Lemma is well known
[7, 16].

Lemma 2.1. Let C be nonempty convex subset of a smooth Banach space E,
∅ �= D ⊂ C, J : E → E∗ the normalized duality mapping of E, and P : C → D
a retraction. Then the following are equivalent:

(i) 〈x − Px, j(y − Px)〉 ≤ 0 for all x ∈ C and y ∈ D;
(ii) P is both sunny and nonexpansive.

Hence, there exists at most a sunny nonexpansive retraction P from C onto
D.

In 1980, Reich [13] showed that if E is uniformly smooth and F (T ) is the
fixed point set of a nonexpansive mapping T from K into itself, then there is
the unique sunny nonexpansive retraction from K onto F (T ).

Lemma 2.2. (Reich[13]) Let K be nonempty closed convex subset of a uni-
formly smooth Banach space E and let T : K → K be a nonexpansive mapping
with a fixed point. Then F (T ) is a sunny nonexpansive retract of K. Further,
For each fixed u ∈ K and every t ∈ (0, 1), and let zt ∈ K be a point satisfying

zt = tu + (1 − t)T zt.

Then {zt} converges strongly to Pu as t → 0, where P is the unique sunny
nonexpansive retraction from K onto F (T ).

In 1984, Takahashi and Ueda [14] also proved the existence of sunny non-
expansive retractions in uniformly convex Banach space with a uniformly
Géteaux differentiable norm.

Lemma 2.3. (Takahashi -Ueda [14]) Let K be nonempty closed convex subset
of a uniformly convex Banach space E with uniformly Géteaux differentiable
norm. Supose T : K → K is a nonexpansive mapping with a fixed point. Then
F (T ) is a sunny nonexpansive retract of K. Further, For each fixed u ∈ K
and every t ∈ (0, 1), and let zt ∈ K be a point satisfying

zt = tu + (1 − t)T zt.
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Then {zt} converges strongly to Pu as t → 0, where P is the unique sunny
nonexpansive retraction from K onto F (T ).

If Banach space E admits sequentially continuous duality mapping J from
weak topology to weak star topology, then by Lemma 1 of reference [11], we
get that duality mapping J is single-valued. In this case, duality mapping J
is also said to be weakly sequentially continuous, i.e. for each {xn} ⊂ E with

xn ⇀ x, then J(xn)
∗
⇀ J(x) ([7, 11]).

A Banach space E is said to be satisfy Opial’s condition if for any sequence
{xn} in E, xn ⇀ x (n → ∞) implies

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖ , ∀y ∈ E with x �= y.

By Theorem 1 of reference [11], we know that if E admits a weakly sequen-
tially continuous duality mapping, then E satisfies Opial’s condition, and E is
smooth, for more details, see reference [11].We also know that in lp spaces with
p > 1 and p �= 2, the normalized duality mapping J is not weakly sequentially
continuous, but there exists a duality mapping that is weakly sequentially
continuous.

In the sequel, we also need the following lemma which can be found in the
existing literature [7, Lemma 2].

Lemma 2.4. Let C be a nonempty closed convex subset of a reflexive Ba-
nach space E which satisfies Opial’s condition, and suppose T : C → E is
nonexpansive. If as n → ∞, xn ⇀ x, xn − Txn → 0, Then x = Tx.

The following lemma modified Xu [17, Lemma 2.1], also see L.S.liu[18] and
Y.Song and R. Chen[20, 1].

Lemma 2.5. Let {an} be a sequence of nonnegative real numbers satisfying
the property

an+1 ≤ (1 − γn)an + γnλn + βn, n ≥ 0,

where {γn} ⊂ (0, 1), {βn} ⊂ R and {λn} ⊂ R such that

(i)
∞∑

n=0

γn = ∞ or equivalently
∞∏

n=0

(1 − γn) = 0;

(ii) lim sup
n→∞

λn ≤ 0;

(iii)
∞∑

n=0

|βn| < +∞.

Then {an} converges to zero, as n → ∞.

3. Main Results

At first, we will show the fixed point set F (T ) of a nonexpansive mapping
T is sunny nonexpansive retraction of K in a reflexive Banach space E which
admits a weakly sequentially continuous duality mapping J from E to E∗.
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Lemma 3.1. Let E be a reflexive Banach space which admits a weakly sequen-
tially continuous duality mapping J from E to E∗. Suppose K is a nonempty
closed convex subset of E. Suppose that T : K → K is a nonexpansive map-
ping with F (T ) �= ∅. Then the fixed point set F (T ) of T is sunny nonexpansive
retract of K.

Proof. For a given u ∈ K, we can define a contraction Tt : K → K by
Tt = tu + (1 − t)T . An application of the Banach contraction principle yields
a unique fixed point xt of Tt for each t ∈ (0, 1). Notice that the assumption
that F (T ) �= ∅ guarantees the boundedness of the net {xt}. At this point,
following the proof lines of Theorem 2.2 in Yisheng Song and Rudong Chen
[1](f(xt) ≡ u and P = I), we can get that

xt → p ∈ F (T ), t → 0,

and p satisfies the following variational inequality:

〈u − p, j(y − p)〉 ≤ 0, ∀y ∈ F (T ).

Let PF (T )u = lim
t→0

xt = p, we obtain that

〈u − PF (T )u, j(y − PF (T )u)〉 ≤ 0, ∀y ∈ F (T ).

By Lemma 2.1, we obtain that PF (T ) is sunny nonexpansive retraction from K
to F (T ). The proof is completed.

Theorem 3.2. Let E be a reflexive Banach space which admits a weakly
sequentially continuous duality mapping J from E to E∗. Suppose K is a
nonempty closed convex subset of E, and S, T is nonexpansive mappings from
K into itself such that F := F (ST ) = F (T ) ∩ F (S) �= ∅. Let {αn} and {βn}
be a sequence of positive numbers in [0, 1] satisfying the following conditions:

(A1) lim
n→∞

αn = 0;

(A2)
∞∑

n=1

|αn+1 − αn| < +∞ or (A2)′ lim
n→∞

αn

αn+1

= 1;

(A3)
∞∑

n=1

αn = ∞;

(B1) lim
n→∞

βn = 0;

(B2)
∞∑

n=1

|βn+1 − βn| < +∞.

For arbitrary initial value x0 ∈ K and fixed anchor u ∈ K, define iteratively
a sequence {xn} as follows:

(3.6)

{
yn = Tnxn = βnxn + (1 − βn)Txn

xn+1 = αnu + (1 − αn)Syn, n ≥ 0,

Then {xn} converges strongly to PF u, where PF is the unique sunny nonex-
pansive retraction from K onto F .
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Proof. First, we show we use an inductive argument to prove ‖xn − p‖ ≤ M,
∀p ∈ F and n ≥ 0, where M = max{‖x0 − p‖ , ‖u − p‖}. The result is clearly
true for n = 0. Suppose ‖xk − p‖ ≤ M , then by the nonexpansivity of T, S,
clearly Tn = βnI + (1 − βn)T is nonexpansive and F (T ) = F (Tn), so we have

‖xk+1 − p‖ = ‖αk(u− p) + (1 − αk)(Syk − p)‖
≤ αk ‖u − p‖ + (1 − αk) ‖yk − p‖
≤ αk ‖u − p‖ + (1 − αk) ‖Tkxk − p‖
≤ αk ‖u − p‖ + (1 − αk) ‖xk − p‖ ≤ M.

Therefore, ‖xn − p‖ ≤ M,∀n ≥ 0. So the sets {xn} is bounded, and the set
{Txn}, {Sxn} are also bounded. Putting C = sup

n∈�
{‖xn‖, ‖Txn‖, ‖Sxn‖}. Now

we show
lim

n→∞
‖xn+1 − xn‖ = 0.

Using (3.6), we have

‖yn − yn−1‖ =‖Tnxn − Tn−1xn−1‖
≤‖Tnxn − Tnxn−1‖ + ‖Tnxn−1 − Tn−1xn−1‖
≤‖xn − xn−1‖ + |βn − βn−1|‖xn−1 + Txn−1||
≤‖xn − xn−1‖ + 2C|βn − βn−1|.

Thus,

‖xn+1 − xn‖ =‖αnu + (1 − αn)Syn − (αn−1u + (1 − αn−1)Syn−1)‖
≤|αn − αn−1|‖u‖ + (1 − αn)‖Syn − Syn−1‖

+ |αn − αn−1|‖Syn−1‖
≤(1 − αn)‖yn − yn−1‖ + |αn − αn−1|(‖u‖ + C)

≤(1 − αn)‖xn − xn−1‖ + |αn − αn−1|(‖u‖ + C)

+ 2C|βn − βn−1|
=(1 − αn)‖xn − xn−1‖ + αn|1 − αn−1

αn
|(‖u‖ + C)

+ 2C|βn − βn−1|.
By (A2) and (B2) we have

∞∑
n=1

(|αn − αn−1|(‖u‖ + C) + 2C|βn − βn−1|) < +∞.

So adding to (A3), which satisfies Lemma 2.5 (λn ≡ 0). By (A2)′ we have

lim
n→∞

|1 − αn−1

αn
|(‖u‖ + C) = 0,

So adding to (A3) and (B2), which also satisfies Lemma 2.5. Hence, we have

(3.7) lim
n→∞

‖xn+1 − xn‖ = 0.
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Setting A = ST , obviously A is nonexpansive mapping from K to itself. Next
we prove

(3.8) lim
n→∞

‖xn+1 −Axn+1‖ = 0.

By (3.6), condition (A1) and {Txn}, {Sxn} boundary, we get

(3.9) ‖xn+1 − Syn‖ = αn‖u − Syn‖ → 0.

and

‖xn+1 − STxn+1‖ ≤‖xn+1 − Syn‖ + ‖Syn − STxn‖ + ‖STxn − STxn+1‖
≤‖xn − xn+1‖ + ‖xn+1 − Syn‖ + ‖yn − Txn‖
≤‖xn − xn+1‖ + ‖xn+1 − Syn‖ + βn‖xn − Txn‖

Using (3.7), (3.9) and condition (B1), we obtain (3.8) holds.
On the other hand, by Lemma 3.1, we know F = F (A) is the sunny non-

expansive retract of K, and denote PF a sunny nonexpansive retraction of K
onto F . We next show that

(3.10) lim sup
n→∞

〈u − PF u, j(xn+1 − PF u)〉 ≤ 0.

Indeed, we can take a subsequence {xnk+1} of {xn+1} such that

lim sup
n→∞

〈u − PF u, j(xn+1 − PF u)〉 = lim
k→∞

〈u − PF u, j(xnk+1 − PFu)〉.

We may assume that xnk+1 ⇀ x∗ by E reflexive and {xn+1} bounded. It follow
from Lemma 2.4 and (3.8) that x∗ ∈ F (A) = F . Hence by Lemma 2.1 and the
duality mapping J is weakly sequentially continuous from E to E∗, we obtain

lim sup
n→∞

〈u − PFu, j(xn+1 − PF u)〉 = 〈u − PFu, j(x∗ − PF u)〉 ≤ 0.

Finally we show that xn → PF u. As a matter of fact, Using (2.1) and (1 −
αn)2 ≤ (1 − αn), we get

(3.11)

‖xn+1 − PF u‖2 = ‖(1 − αn)(Anxn − PF u) + αn(u − PF u)‖2

≤(1 − αn) ‖xn − PF u‖2

+ 2αn〈u − PF u, j(xn+1 − PF u)〉).
Using Lemma 2.5, (A3), (3.10) and (3.11), we conclude that xn → PF u.

Remark 1. Since the condition (A2), (A2)′ and (B2) are mainly used to
show xn+1 − xn → 0, if condition (B2) is replaced by condition

(B2)′ lim
n→∞

|βn − βn−1|
αn

= 0, then the result still holds.

Using Lemma 2.3, we know that in a uniformly convex Banach space E
with uniformly Géteaux differentiable norm, the fixed point set F (T ) of non-
expansive self-mapping T on nonempty closed convex subset K of E is sunny
nonexpansive retract of K. So we can also get the following theorem:



Iterative Approximations to Common Fixed Points 105

Theorem 3.3. Let E be a uniformly convex Banach space with uniformly
Géteaux differentiable norm. Suppose K is a nonempty closed convex sub-
set of E, and S, T are nonexpansive mapping from K to K such that F :=
F (ST ) = F (S) ∩ F (T ) �= ∅. The sequence {xn} is defined by (3.6), and {αn}
and {βn} are two sequences in [0, 1] satisfying the conditions (A1), (A2) or
(A2)′, (A3), (B1), (B2) or (B2)′. Then xn → PFu, where PF is a sunny
nonexpansive retraction from K into F .

Proof. As in the proof of Theorem 3.2, we can reach the following objectives:
(1) {xn}, {Sxn} and {Txn}is bounded;
(2) xn+1 − xn → 0 as n → ∞;
(3) Putting A = ST , then

F = F (A) = F (ST ) = F (S) ∩ F (T ), xn − Axn → 0 (n → ∞).

We next show that xn → PF (u), (n → ∞).
Indeed, putting zt = tu+(1− t)Azt, by Lemma 2.3, we obtain PF u = lim

t→0
zt,

where PF is a sunny nonexpansive retract from K to F . Using (2.1) and
equality zt − xn = (1 − t)(Azt − xn) + t(u − xn), we get

‖zt − xn‖2 ≤(1 − t)2 ‖Azt − xn‖2 + 2t〈u − xn, j(zt − xn)〉
≤(1 − 2t + t2) ‖zt − xn‖2 + an(t)

+ 2t〈u − zt, j(zt − xn)〉 + 2t ‖zt − xn‖2

where
an(t) = ‖xn −Axn‖ (2 ‖zt − xn‖ + ‖xn −Axn‖).

It follows that

(3.12) 〈u − zt, j(xn − zt)〉 ≤ t

2
‖zt − xn‖2 +

1

2t
an(t).

We claim that an(t) → 0 as n → ∞. Indeed, since {xn}, {zt} is bounded,
{Axn} is bounded. So that {xn − Axn} and {zt − xn} is bounded. Using
lim

n→∞
‖xn −Axn‖ = 0, we obtain

an(t) = ‖xn −Axn‖ (2 ‖zt − xn‖+ ‖xn −Axn‖) → 0 as n → ∞.

Taking n → ∞ in(3.12),

(3.13) lim sup
n→∞

〈u − zt, j(xn − zt)〉 ≤ t

2
M,

where M > 0 is a constant such that M ≥ max ‖zt − xn‖2 for t ∈ (0, 1) and
for all n ≥ 1. By letting t → 0 in (3.13) we have

(3.14) lim sup
t→0

lim sup
n→∞

〈u − zt, j(xn − zt)〉 ≤ 0.

Next we show that

lim sup
n→∞

〈u − PF u, j(xn − PF u)〉 ≤ 0.
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In fact, noting that zt converges strongly to PFu, as t → 0, and that the set
{zt − xn} is bounded, together with the fact that the duality map J is single-
valued and norm-weak* uniformly continuous on bounded sets of a Banach
space E with a uniformly Géteaux differentiable norm, we get

|〈u − PF u, j(xn − PF u)〉 − 〈u − zt, j(xn − zt)〉|
= |〈u − PFu, j(xn − PF u)− j(xn − zt)〉 + 〈zt − PF u, j(xn − zt)〉|
≤ |〈u − PF u, j(xn − PFu) − j(xn − zt)〉|

+ ‖zt − PF u‖ ‖xn − zt‖ → 0, as t → 0.

Hence, ∀ε > 0, ∃δ > 0, such that ∀t ∈ (0, δ), for all n, we have

〈u − PF u, j(xn − PFu)〉 ≤ 〈u − zt, j(xn − zt)〉 + ε.

Therefore,

lim sup
n→∞

〈u − PF u, j(xn − PF u)〉 ≤ lim sup
n→∞

(〈u − zt, j(xn − zt)〉 + ε.

Taking t → 0 and noting (3.14), we have

lim sup
n→∞

〈u − PF u, j(xn − PF u)〉
≤ lim sup

t→0
lim sup

n→∞
(〈u − zt, j(xn − zt)〉 + ε

≤ ε.

Since ε is arbitrary, we get

(3.15) lim sup
n→∞

〈u − p, j(xn+1 − PFu)〉 ≤ 0.

Finally we show that xn → PF u. In fact, Using (2.1), we get

(3.16)

‖xn+1 − PF u‖2 = ‖(1 − αn)(Anxn − PF u) + αn(u − PF u)‖2

≤(1 − αn) ‖xn − PF u‖2

+ 2αn〈u − PF u, j(xn+1 − PF u)〉).
Using Lemma 2.5, (A3), (3.15) and (3.16), we can easily obtain that xn strongly
converge to PF (u). The proof is complete.

Since every uniformly smooth Banach space must be reflexive Banach space
with uniformly Géteaux differentiable norm, so using Lemma 2.2, we also
obtain the following theorem. As the proof is similar to theorem 3.3, we omit
it.

Theorem 3.4. Let E be a uniformly smooth Banach space. Suppose K is a
nonempty closed convex subset of E, and S, T are nonexpansive mapping from
K to K such that F := F (ST ) = F (S) ∩ F (T ) �= ∅. The sequence {xn} is
defined by (3.6), and {αn} and {βn} are two sequences in [0, 1] satisfying the
conditions (A1), (A2) or (A2)′, (A3), (B1), (B2) or (B2)′. Then xn → PF u,
where PF is a sunny nonexpansive retraction from K into F .
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In theorem 3.4, taking S = I , we can easily obtain the following corollary
which is Theorem 1 of Tae-Hwa Kim and Hong-Kun Xu[2].

Corollary 3.5. (T.H. Kim-H.K.Xu[2]Theorem 1) Let E be a uniformly smooth
Banach space. Suppose K is a nonempty closed convex subset of E, and T is
nonexpansive mappings from K into itself such that F := F (T ) �= ∅. Let {αn}
and {βn} be a sequence of positive numbers in [0, 1] satisfying the following
conditions:

(i) αn → 0, βn → 0;

(ii)
∞∑

n=1

αn = ∞;

(iii)
∞∑

n=1

|αn+1 − αn| < +∞,
∞∑

n=1

|βn+1 − βn| < +∞.

For arbitrary initial value x0 ∈ K and fixed anchor u ∈ K, define iteratively
a sequence {xn} as follows:

(3.17)

{
yn = βnxn + (1 − βn)Txn

xn+1 = αnu + (1 − αn)yn, n ≥ 0,

Then {xn} converges strongly to Pu, where P is the unique sunny nonexpansive
retraction from K onto F (T ).

Corollary 3.6. Let E be a reflexive Banach space which admits a weakly se-
quentially continuous duality mapping J from E to E∗ or a uniformly smooth
Banach space or uniformly convex Banach space with uniformly Géteaux dif-
ferentiable norm. Suppose K is a nonempty closed convex subset of E, and
T are nonexpansive mapping from K to K such that F := F (T ) �= ∅. The
sequence {xn} is defined by (3.17), and {αn} and {βn} are two sequences in
[0, 1] satisfying the conditions (A1), (A2) or (A2)′, (A3), (B1), (B2) or (B2)′.
Then xn → PFu, where PF is a sunny nonexpansive retraction from K into
F .
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