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Abstract

In original data envelopment analysis (DEA) models, the data for all
inputs and outputs are known exactly. When some inputs and outputs
are unknown decision variables, such as interval data, ordinal data, and
ratio bounded data, the DEA model is called imprecise DEA (IDEA).
In this paper, We develop an alternative approach based upon slacks-
based measure of efficiency (SBM) for dealing with interval data in DEA.
Upper and lower bounds for the SBM-efficiency scores of the decision
making units (DMUs) are then defined, and DMUs are classified in
terms of the variability of their SBM-efficiency scores.

Keywords: DEA, Slacks, SBM-efficiency, Interval data

1 Introduction

Data envelopment analysis (DEA) is a nonparametric technique for measuring
and evaluating the relative efficiency of peer decision making units (DMUs)
with multiple inputs and multiple outputs (Charnes et al., 1978). The original
DEA models [4] assume that data on the outputs and inputs are known exactly.
However, this assumption may not be true. For example, some outputs and
inputs may be only known in the form of interval data, ordinal data, and ratio
bounded data. Cooper et al. (1999) addressed the problem of imprecise data
in DEA in its general form (see also Entali et al., 2002; Zhu 2003; Zhu 2004,
for further information). Also Despotis and Smirlis (2002) calculated upper
and lower bounds for the radial efficiency scores of DMUs with interval data.
In this paper we consider SBM model with interval data. First we introduce
SBM model (Tone, 2001), then according to Despotis and Smirlis (2002) we
follow SBM-efficiency analysis. The rest of this paper is as follows: Section
2 introduces SBM model. Section 3 is the main part of this paper where we
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introduce SBM model with interval data. In Section 4 We get upper and lower
bounds of SBM-efficiency. In Section 5 we will classify DMUs based upon
their SBM-efficiency scores. Section 6 contains a numerical example. And
conclusions are given in Section 7.

2 SBM model

Suppose we have n DMUs. Each DMUj , (j = 1, 2, . . . , n), produces s different
outputs yrj, (r = 1, 2, . . . , s), using m different inputs xij , (i = 1, 2, . . . , m).
When a DMUo is under evaluation by the SBM model, we have:

(SBM) ρ∗
o = min

1− 1
m

m∑

i=1

s−i
xio

1+ 1
s

s∑

r=1

s+
i

yro

(1)

s.t.
n∑

j=1

λjxij + s−i = xio, i = 1, 2, . . . , m

n∑

j=1

λjyrj − s+
r = yro, r = 1, 2, . . . , s

λj, s
−
i , s+

r ≥ 0, ∀j, i and r,

where xio and yro are the ith input and rth output of DMUo (o ∈ {1, 2, . . . , n}),
respectively.
Definition 1.(SBM-efficiency) A DMUo is SBM-efficient iff ρ∗

o = 1.
This condition is equivalent to S−∗ = (s−∗

1 , s−∗
2 , . . . , s−∗

m ) = 0 and S+∗ =
(s+∗

1 , s+∗
2 , . . . , s+∗

s ) = 0, i.e., no input excesses and no output shortfalls in any
optimal solution. Otherwise it is called SBM-inefficient.

Theorem 1. If DMUA dominates DMUB, then ρ∗
A ≥ ρ∗

B.
Proof. See Cooper et al., (2001).�

Model (1) can be transformed into an equivalent linear program using the
Charnes-Cooper transformation as follows (See Charnes and Cooper, 1962;
Tone, 2001).
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(LSBM) min τ = t − 1
m

m∑

i=1

S−
i

xio
(2)

s.t. 1 = t + 1
s

s∑

r=1

S+
r

yro
,

n∑

j=1

Λjxij + S−
i = txio, i = 1, 2, . . . , m

n∑

j=1

Λjxrj − S+
r = tyro, r = 1, 2, . . . , s

t > 0, Λj, S
−
i , S+

r ≥ 0, ∀j, i and r,

where t= 1

1+ 1
s

s∑

r=1

s+
r

yro

, Λj = tλj , S−
i = ts−i , S+

r = ts+
r , ∀j, i and r.

The dual program of Model (2) is as follows:

(DLSBM) max 1 +

s∑

r=1

uryro −
m∑

i=1

vixio (3)

s.t.

s∑

r=1

uryrj −
m∑

i=1

vixij ≤ 0, j = 1, 2, . . . , n

vixio ≥ 1
m

, i = 1, 2, . . . , m

uryro ≥ 1
s
(1 +

s∑

r=1

uryro −
m∑

i=1

vixio), r = 1, 2, . . . , s.

3 SBM Model with interval data

Unlike the original DEA models, we assume further that the levels of inputs
and outputs are not known exactly, the true input and output data known to
lie within bounded intervals, i.e., xij ∈ [xij , xij ] and yrj ∈ [y

rj
, yrj ] with upper

and lower bounds of the intervals given as constants and assumed strictly
positive. In this case, the SBM-efficiency can be an interval. Now Consider
the following SBM-DEA model with imprecise data:
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max 1 +

s∑

r=1

uryro −
m∑

i=1

vixio (4)

s.t.
s∑

r=1

uryrj −
m∑

i=1

vixij ≤ 0, j = 1, 2, . . . , n

vixio ≥ 1
m

, i = 1, 2, . . . , m

uryro ≥ 1
s
(1 +

s∑

r=1

uryro −
m∑

i=1

vixio), r = 1, 2, . . . , s.

xij ∈ [xij xij]
yrj ∈ [y

rj
yrj]

λj, s
−
i , s+

r ≥ 0, ∀j, i and r.

Obviously Model (4) is non-linear and non-convex, because in addition to vari-
ables u1, u2, . . . , us and v1, v2, . . . , vm (weights for outputs and inputs, respec-
tively), the levels of outputs yrj and inputs xij are also variables whose exact
values are to be determined. The SBM-efficiency score attained by DMUo

in Model (4) is not worse (less) than any other SBM-efficiency score that the
DMU might attain, by adjusting the levels of the outputs and inputs within
the limits of the bounded intervals. Now we convert Model (4) into an equiva-
lent linear program. For this task, first we apply the following transformations
to variables xij and yrj:
xij = xij + sij(xij − xij), 0 ≤ sij ≤ 1; i = 1, 2, . . . , m; j = 1, 2, . . . , n,
yrj = y

rj
+ trj(yrj − y

rj
), 0 ≤ trj ≤ 1; r = 1, 2, . . . , s; j = 1, 2, . . . , n.

With these transformations, Model (4) is as follows:

max 1 +
s∑

r=1

ur(yro
+ tro(yro − y

ro
)) −

m∑

i=1

vi(xio + sio(xio − xio))

s.t.

s∑

r=1

ur(yrj
+ trj(yrj − y

rj
)) −

m∑

i=1

vi(xij + sij(xij − xij)) ≤ 0, ∀j

vi(xio + sio(xio − xio)) ≥ 1
m

, ∀i

ur(yro
+ tro(yro − y

ro
)) ≥ 1

s
[1 +

s∑

r=1

ur(yro
+ tro(yro − y

ro
))

−
m∑

i=1

vi(xio + sio(xio − xio))], ∀r

0 ≤ sij ≤ 1, ∀i, j
0 ≤ trj ≤ 1, ∀r, j.

Set
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qij = sijvi, i = 1, 2, . . . , m; j = 1, 2, . . . , n,
prj = trjur, r = 1, 2, . . . , s; j = 1, 2, . . . , n.
So, inequalities 0 ≤ sij ≤ 1 and 0 ≤ trj ≤ 1 convert to 0 ≤ qij ≤ vi and
0 ≤ prj ≤ ur, respectively. With the above substitutions, finally Model (5) is
transformed into the following equivalent linear program:

ρ∗
SBM = max 1 +

s∑

r=1

uryro
+ pro(yro − y

ro
) −

m∑

i=1

vixio + qio(xio − xio) (5)

s.t.

s∑

r=1

uryrj
+ prj(yrj − y

rj
) −

m∑

i=1

vixij + qij(xij − xij) ≤ 0, ∀j

vixio + qio(xio − xio) ≥ 1
m

, ∀i

uryro
+ pro(yro − y

ro
) ≥ 1

s
[1 +

s∑

r=1

uryro
+ pro(yro − y

ro
)−

m∑

i=1

vixio + qio(xio − xio)], ∀r

0 ≤ qij ≤ vi, ∀i, j
0 ≤ prj ≤ ur, ∀r, j.

It is clear that Model (5) is linear. If we take the length of each interval equal
to zero then Model (5) becomes Model (3). To find the SBM-efficiency value
of DMUo with interval data in SBM model, we must solve Model (5).

4 Upper and lower bounds of SBM-efficiency

The upper bound of interval SBM-efficiency is obtained from the optimistic
viewpoint and the lower bound is obtained from the pessimistic viewpoint.
The following model provides such an upper bound of interval SBM-efficiency
for DMUo:

ρ∗
o = max 1 +

s∑

r=1

uryro −
m∑

i=1

vixio (6)

s.t.
s∑

r=1

uryrj
−

m∑

i=1

vixij ≤ 0, j = 1, 2, . . . , n, j �= o

s∑

r=1

uryro −
m∑

i=1

vixio ≤ 0

vixio ≥ 1
m

, i = 1, 2, . . . , m

uryro ≥ 1
s
(1 +

s∑

r=1

uryro −
m∑

i=1

vixio), r = 1, 2, . . . , s.
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Model (6) is an SBM-DEA model with exact data, where the levels of in-
puts and outputs are adjusted in favour of DMUo and aggressively against
the other DMUs. For DMUo, the inputs are adjusted at the lower bounds
and the outputs at the upper bounds of the intervals. Unfavourably for the
other DMUs, the inputs are contrarily adjusted at their upper bounds and the
outputs at their lower bounds. The model below provides a lower bound of
SBM-efficiency score for DMUo:

ρ∗
o

= max 1 +

s∑

r=1

uryro
−

m∑

i=1

vixio (7)

s.t.
s∑

r=1

uryrj −
m∑

i=1

vixij ≤ 0, j = 1, 2, . . . , n, j �= o

s∑

r=1

uryro
−

m∑

i=1

vixio ≤ 0

vixio ≥ 1
m

, i = 1, 2, . . . , m

uryro
≥ 1

s
(1 +

s∑

r=1

uryro
−

m∑

i=1

vixio), r = 1, 2, . . . , s.

Model (7) is also an SBM-DEA model with exact data. For DMUo, the inputs
are adjusted at their upper bounds and the outputs at their lower bounds and
for the other DMUs, the inputs are adjusted at their lower bounds and the
outputs at their upper bounds.
Therefore, Models (6) and (7) provide for each DMU a bounded interval
[ρ∗

o
, ρ∗

o] in which its possible SBM-efficiency scores lie, from the worst to
the best case.

Theorem 2. If ρ∗
SBM and ρ∗

o are the optimal values of (5) and (6), respectively,
then ρ∗

SBM = ρ∗
o.

Proof. Suppose u∗ = (u∗
r, r = 1, 2, . . . , s) and v∗ = (v∗

i , i = 1, 2, . . . , m) is an
optimal solution of Model (6).
Set
prj = 0, r = 1, 2, . . . s; j = 1, 2, . . . n, j �= o,
pro = u∗

r, r = 1, 2, . . . s,
qij = v∗

i , i = 1, 2, . . .m; j = 1, 2, . . . n, j �= o,
qio = 0, i = 1, 2, . . .m.
Then the augmented solution (u, v, P, Q)=(u∗, v∗, P, Q) is a feasible so-
lution for Model (5). Hence ρ∗

o ≤ ρ∗
SBM.

On the basis of the strategy of Model (5), which determines the best inputs and
outputs level of DMUo in its interval, ρ∗

o is the highest possible SBM-efficiency
score that DMUo can obtain. Then we have ρ∗

SBM ≤ ρ∗
o. So ρ∗

SBM = ρ∗
o.�
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5 Classification of the DMUs

On the basis of the above SBM-efficiency score intervals, the DMUs can be
classified in three subsets as follows:
• E++

SBM = {j ∈ {1, 2, . . . , n}| ρ∗
o

= 1},
• E+

SBM = {j ∈ {1, 2, . . . , n}| ρ∗
o

< 1, and ρ∗
o = 1},

• E−
SBM = {j ∈ {1, 2, . . . , n}| ρ∗

o < 1}.
The set E++

SBM consists of the DMUs that are SBM-efficient in any case (any
combination of input/output levels). The set E+

SBM consists of the DMUs that
are SBM-efficient in a maximal sense, but there are input/output adjustments
under which they cannot maintain their SBM-efficiency; and according to the
differences of upper and lower bounds of SBM-efficiency values (ρ∗

o − ρ∗
o
), the

SBM-efficient DMUs in E+
SBM can be ranked. Finally, the set E−

SBM consists of
the definitely SBM-inefficient DMUs.

6 An application

To illustrate our approach, consider the interval data setting of Table 1 (5
DMUs with 2 inputs and 2 outputs). The SBM-efficiency scores obtained by
applying Models (6) and (7) are given in Table 2.

Table 1: Interval data

Input Output

x1j x1j x2j x2j y
1j

y1j y
2j

y2j

DMU1 7 7.5 0.6 0.9 15.7 16.1 14 20
DMU2 6 7.5 2.1 4.8 13.8 14.4 10.5 11
DMU3 5 8.5 1 7 14.3 15.9 14 17.5
DMU4 2 6 1.6 0.5 15.7 19.8 10.5 14.5
DMU5 9.5 11 1.2 1.9 15.8 18.1 10.5 12.5

Table 2: SBM-efficiency scores and classification
ρ∗

o
ρ∗

o Classification

DMU1 1.00000 1.00000 E++
SBM

DMU2 0.21308 1.00000 E+
SBM

DMU3 0.31757 1.00000 E+
SBM

DMU4 0.41365 1.00000 E+
SBM

DMU5 0.32566 0.77462 E−
SBM
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As can be observed from Table 2, for DMU1, for instance, ρ∗
o
=1, and then

DMU1 is classified in E++
SBM as it is SBM-efficient in any case. According to

(ρ∗
j −ρ∗

j
) we rank SBM-efficient DMUs in E+

SBM as follows: DMU4, DMU3, and

DMU2.

7 Conclusion

After introducing IDEA by Cooper et al., in 1999, this subject has been in-
vestigated in some perspectives. The current paper discusses and develops an
IDEA procedure based upon the SBM model. Also the discussion in the cur-
rent study is based upon multiplier SBM model. We define upper and lower
bounds for the possible SBM-efficiency scores that a unit might attain in an
imprecise data setting. We then use these bounds to classify the units as fol-
lows:
(i) SBM-efficient in any case
(ii) SBM-efficient in maximal sense
(iii) always SBM-inefficient.
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