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Abstract

In this study, we provide a new Kantorovich-type convergence the-
orem for Newton’s method in Banach space. Its condition is different
from earlier ones, and therefore it has theoretical and practical value.
A simple numerical example is given to show that our results apply, but
earlier ones fail.
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1 Introduction

Let X,Y be Banach spaces, F : D ⊆ X −→ Y be Fréchet-differentiable.
We are concerned with the problem of approximating a solution x∗ of the
equation

F (x) = 0.
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Newton’s method

xn+1 = xn − F ′(xn)−1F (xn)(n ≥ 0) (1)

has been applied extensively to generate a sequence {xn}(n ≥ 0) converging
to x∗. In particular, the following conditions have been used.

Condition A(Kantorovich[6]) Let F : D ⊆ X −→ Y be Fréchet-differentiable,
and F ′(x0)

−1 ∈ L(Y, X) exists for some x0 ∈ D, where L(Y, X) is the space of
bounded linear operator from Y into X. Assume

‖F ′(x0)
−1[F ′(x) − F ′(y)]‖ ≤ K‖x − y‖(∀x, y ∈ D), (2)

‖F ′(x0)
−1F (x0)‖ ≤ η (3)

and
2Kη ≤ 1. (4)

Condition B(Huang[5], Gutierrez[3,4]) Let F : D ⊆ X −→ Y be twice
Fréchet-differentiable, F ′(x) ∈ L(X, Y ), F ′′(x) ∈ L(X, L(X, Y ))(x ∈ D), F ′(x0)

−1

exists at some x0 ∈ D. Assume

‖F ′(x0)
−1[F ′(x) − F ′(y)]‖ ≤ a0‖x − y‖(∀x, y ∈ D),

‖F ′(x0)
−1F (x0)‖ ≤ η, ‖F ′(x0)

−1F (x0)‖ ≤ b0,

and
3ηa2

0 + 3a0b0 + b3
0 ≤ (b2

0 + 2a0)
3
2 .

Condition C(Argyros[1]) Let F : D ⊆ X −→ Y be twice Fréchet-differentiable.
Assume

(a) there exists x0 ∈ X and non-negative numbers a,b,c such
that

‖F ′′(x) − F ′′(x0)‖ ≤ a‖x − x0‖, ‖F ′′(x0)‖ ≤ b

and
‖F ′(x)−1‖ ≤ c(∀x ∈ X).

(b) the following conditions hold:

α =
c

2
[
a

3
‖F ′(x0)

−1F (x0)‖ + b]‖F ′(x0)
−1F (x0)‖ ∈ [0, 1)

and

d =
c

2
[(

1

1 − α
+

α

3
)a‖F ′(x0)

−1F (x0)‖ + b]‖F ′(x0)
−1F (x0) ∈ [0, 1).
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Under condition A,B or C, one can obtain many results. But sometimes
conditions A,B and C fail.

Example Let D = X = Y = R, x0 = 0 and consider the function F on D
given by

F (x) =

∫ x

−1

(1 + |u|)du.

Using (2) and (3) ,we get K=1, η = 3
2
. Kantorovich assumption (4) is

violated, since 2Kη = 3 > 1. Therefore condition A fails. Furthermore,
conditions B and C fail because F ′′(0) doesn’t exist.

In this paper, we put forth a new condition, under which the Newton
method starting from x0 = 0 in above example converges.

2 The main result

In this section, we present our convergence result concerning Newton’s
method using hypotheses on the first Fréchet-derivative. It is assumed that a
solution of a nonlinear equation exists.

Theorem Let F : X −→ Y be a Fréchet-differentiable operator. Assume
(a) there exists x0 ∈ X and non-negative numbers a,b such that

‖F ′(x) − F ′(y)‖ ≤ a‖x − y‖ (5)

and
‖F ′(x)−1‖ ≤ b(∀x ∈ X). (6)

(b) Define parameters α by

α =
ab

2
‖F ′(x0)

−1F (x0)‖

and the following condition holds:

α ∈ [0, 1). (7)

Then the following hold:

‖xn+2 − xn+1‖ ≤ ab

2
‖xn+1 − xn‖2(n ≥ 0), (8)

‖xn+1 − xn‖ ≤ αn‖F ′(x0)
−1F (x0)‖, (9)

‖xn − x∗‖ ≤ ‖F ′(x0)
−1F (x0)‖

+∞∑
j=n

αj(n ≥ 0) (10)
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and
lim

n−→∞
xn = x∗ with F (x∗) = 0.

Proof We first note that Newton iterates {xn}(n ≥ 0) generated by (1) are
well defined for all n ≥ 0 since F ′(x)−1 exists for all x ∈ X. Using (1) we
obtain the approximation

F (xn+1) = F (xn+1) − F (xn) − F ′(xn)(xn+1 − xn)

=

∫ 1

0

[F ′(xn + t((xn+1 − xn))) − F ′(xn)]dt(xn+1 − xn) (11)

Then, by (5),(6) and (11) we obtain

‖xn+2 − xn+1‖ ≤ ab

2
‖xn+1 − xn‖2(n ≥ 0), (12)

which shows (8). For n=0, (12) gives

‖x2 − x1‖ ≤ ab

2
‖F ′(x0)

−1F (x0)‖‖x1 − x0‖ = α‖x1 − x0‖.

Let us assume
‖xk+2 − xk+1‖ ≤ α‖xk+1 − xk‖ (13)

for k = 0, 1, 2, · · · , n − 1. Then, by (7) and (13) we get

‖xn+2 − xn+1‖ ≤ ab

2
‖xn+1 − xn‖2

≤ · · · ≤ ab

2
αn‖x1 − x0‖‖xn+1 − xn‖

= αn+1‖xn+1 − xn‖ ≤ α‖xn+1 − xn‖,
which shows (13) for k=n.

Furthermore, it follows that

‖xn+1 − xn‖ ≤ α‖xn − xn−1‖ ≤ · · · ≤ αn‖x1 − x0‖,
which shows (9). For p ≥ 0, estimate (9) implies

‖xn+p − xn‖ ≤ ‖F ′(x0)
−1F (x0)‖

n+p−1∑
j=n

αj(n ≥ 1). (14)

It follows from (7) and (14) that {xn}(n ≥ 0) is a Cauchy sequence in a Banach
space X and it converges to some x∗ ∈ X. So estimate (10) holds. Finally, by
letting n −→ ∞ in (1) we get F (x∗) = 0.

That completes the proof.
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3 Numerical example

Returning back to above example, we first note that there exists a zero
x∗ of F on R since F (0)F (−2) < 0. Moreover, we get a=1, b=1 by (5) and
(6). Then, we obtain α = ab

2
‖F ′(x0)

−1F (x0)‖ = 3
4

< 1. Hence, all hypotheses
of our theorem are satisfied. That is, our convergence theorem guarantees that
the Newton method generated by (1) and starting from x0 = 0 converges to a
zero x∗ of function F.
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