Applied Mathematical Sciences, Vol. 1, 2007, no. 14, 691 - 695

A New Convergence Theorem for Newton's Method in Banach Space Using Assumptions on the First Fréchet-derivative

Kong Xianming

Department of Mathematics Taishan University, 271000 Tai'an, China

Zhang Xianghu

Shandong University of Science and Technology 27100, Tai'an China

Hu Zhongyong

Department of Mathematics Taishan University, 271000 Tai'an, China

Abstract

In this study, we provide a new Kantorovich-type convergence theorem for Newton's method in Banach space. Its condition is different from earlier ones, and therefore it has theoretical and practical value. A simple numerical example is given to show that our results apply, but earlier ones fail.

Mathematics Subject Classification: 65J15; 65G99; 49M15

Keywords: Newton's method; Fréchet-differentiable; Convergence

1 Introduction

Let X,Y be Banach spaces, $F: D \subseteq X \longrightarrow Y$ be Fréchet-differentiable. We are concerned with the problem of approximating a solution x^* of the equation

F(x) = 0.

Newton's method

$$x_{n+1} = x_n - F'(x_n)^{-1} F(x_n) (n \ge 0)$$
(1)

has been applied extensively to generate a sequence $\{x_n\}(n \ge 0)$ converging to x^* . In particular, the following conditions have been used.

Condition A(Kantorovich[6]) Let $F : D \subseteq X \longrightarrow Y$ be Fréchet-differentiable, and $F'(x_0)^{-1} \in L(Y, X)$ exists for some $x_0 \in D$, where L(Y, X) is the space of bounded linear operator from Y into X. Assume

$$||F'(x_0)^{-1}[F'(x) - F'(y)]|| \le K ||x - y|| (\forall x, y \in D),$$
(2)

$$\|F'(x_0)^{-1}F(x_0)\| \le \eta \tag{3}$$

and

$$2K\eta \le 1. \tag{4}$$

Condition B(Huang[5], Gutierrez[3,4]) Let $F : D \subseteq X \longrightarrow Y$ be twice Fréchet-differentiable, $F'(x) \in L(X,Y), F''(x) \in L(X,L(X,Y)) (x \in D), F'(x_0)^{-1}$ exists at some $x_0 \in D$. Assume

$$||F'(x_0)^{-1}[F'(x) - F'(y)]|| \le a_0 ||x - y|| (\forall x, y \in D),$$

$$||F'(x_0)^{-1}F(x_0)|| \le \eta, ||F'(x_0)^{-1}F(x_0)|| \le b_0,$$

and

$$3\eta a_0^2 + 3a_0b_0 + b_0^3 \le (b_0^2 + 2a_0)^{\frac{3}{2}}.$$

Condition C(Argyros[1]) Let $F : D \subseteq X \longrightarrow Y$ be twice Fréchet-differentiable. Assume

(a) there exists $x_0 \in X$ and non-negative numbers a,b,c such

that

$$|F''(x) - F''(x_0)|| \le a ||x - x_0||, ||F''(x_0)|| \le b$$

and

$$|F'(x)^{-1}|| \le c(\forall x \in X).$$

(b) the following conditions hold:

$$\alpha = \frac{c}{2} \left[\frac{a}{3} \|F'(x_0)^{-1} F(x_0)\| + b\right] \|F'(x_0)^{-1} F(x_0)\| \in [0, 1)$$

and

$$d = \frac{c}{2} \left[\left(\frac{1}{1 - \alpha} + \frac{\alpha}{3} \right) a \| F'(x_0)^{-1} F(x_0) \| + b \right] \| F'(x_0)^{-1} F(x_0) \in [0, 1).$$

Under condition A,B or C, one can obtain many results. But sometimes conditions A,B and C fail.

Example Let D = X = Y = R, $x_0 = 0$ and consider the function F on D given by

$$F(x) = \int_{-1}^{x} (1 + |u|) du$$

Using (2) and (3) ,we get K=1, $\eta = \frac{3}{2}$. Kantorovich assumption (4) is violated, since $2K\eta = 3 > 1$. Therefore condition A fails. Furthermore, conditions B and C fail because F''(0) doesn't exist.

In this paper, we put forth a new condition, under which the Newton method starting from $x_0 = 0$ in above example converges.

2 The main result

In this section, we present our convergence result concerning Newton's method using hypotheses on the first Fréchet-derivative. It is assumed that a solution of a nonlinear equation exists.

Theorem Let $F : X \longrightarrow Y$ be a Fréchet-differentiable operator. Assume (a) there exists $x_0 \in X$ and non-negative numbers a,b such that

$$\|F'(x) - F'(y)\| \le a\|x - y\|$$
(5)

and

$$||F'(x)^{-1}|| \le b(\forall x \in X).$$
 (6)

(b) Define parameters α by

$$\alpha = \frac{ab}{2} \|F'(x_0)^{-1}F(x_0)\|$$

and the following condition holds:

$$\alpha \in [0,1). \tag{7}$$

Then the following hold:

$$||x_{n+2} - x_{n+1}|| \le \frac{ab}{2} ||x_{n+1} - x_n||^2 (n \ge 0),$$
(8)

$$||x_{n+1} - x_n|| \le \alpha^n ||F'(x_0)^{-1}F(x_0)||,$$
(9)

$$\|x_n - x^*\| \le \|F'(x_0)^{-1}F(x_0)\| \sum_{j=n}^{+\infty} \alpha^j (n \ge 0)$$
(10)

and

$$\lim_{n \to \infty} x_n = x^* \text{ with } F(x^*) = 0.$$

Proof We first note that Newton iterates $\{x_n\}(n \ge 0)$ generated by (1) are well defined for all $n \ge 0$ since $F'(x)^{-1}$ exists for all $x \in X$. Using (1) we obtain the approximation

$$F(x_{n+1}) = F(x_{n+1}) - F(x_n) - F'(x_n)(x_{n+1} - x_n)$$

= $\int_0^1 [F'(x_n + t((x_{n+1} - x_n))) - F'(x_n)]dt(x_{n+1} - x_n)$ (11)

Then, by (5),(6) and (11) we obtain

$$||x_{n+2} - x_{n+1}|| \le \frac{ab}{2} ||x_{n+1} - x_n||^2 (n \ge 0),$$
(12)

which shows (8). For n=0, (12) gives

$$||x_2 - x_1|| \le \frac{ab}{2} ||F'(x_0)^{-1}F(x_0)|| ||x_1 - x_0|| = \alpha ||x_1 - x_0||.$$

Let us assume

$$\|x_{k+2} - x_{k+1}\| \le \alpha \|x_{k+1} - x_k\|$$
(13)

for $k = 0, 1, 2, \dots, n - 1$. Then, by (7) and (13) we get

$$||x_{n+2} - x_{n+1}|| \le \frac{ab}{2} ||x_{n+1} - x_n||^2$$
$$\le \dots \le \frac{ab}{2} \alpha^n ||x_1 - x_0|| ||x_{n+1} - x_n||$$
$$= \alpha^{n+1} ||x_{n+1} - x_n|| \le \alpha ||x_{n+1} - x_n||,$$

which shows (13) for k=n.

Furthermore, it follows that

$$||x_{n+1} - x_n|| \le \alpha ||x_n - x_{n-1}|| \le \dots \le \alpha^n ||x_1 - x_0||,$$

which shows (9). For $p \ge 0$, estimate (9) implies

$$||x_{n+p} - x_n|| \le ||F'(x_0)^{-1}F(x_0)|| \sum_{j=n}^{n+p-1} \alpha^j (n \ge 1).$$
(14)

It follows from (7) and (14) that $\{x_n\}(n \ge 0)$ is a Cauchy sequence in a Banach space X and it converges to some $x^* \in X$. So estimate (10) holds. Finally, by letting $n \longrightarrow \infty$ in (1) we get $F(x^*) = 0$.

That completes the proof.

694

3 Numerical example

Returning back to above example, we first note that there exists a zero x^* of F on R since F(0)F(-2) < 0. Moreover, we get a=1, b=1 by (5) and (6). Then, we obtain $\alpha = \frac{ab}{2} ||F'(x_0)^{-1}F(x_0)|| = \frac{3}{4} < 1$. Hence, all hypotheses of our theorem are satisfied. That is, our convergence theorem guarantees that the Newton method generated by (1) and starting from $x_0 = 0$ converges to a zero x^* of function F.

References

- I. K. Argyros, A new semilocal convergence theorem for Newton's method in Banach space using hypostheses on the second Fréchet-derivative, J. Comput. Appl. Math. 130 (2001) 369-373.
- [2] I. K. Argyros, Remarks on the convergence of Newton's method under Hölder continuity conditions, Tamkang J. Math. 23(1992) 269-277.
- [3] J. M. Gutiérrez, A new semilocal convergence theorem for Newton's method, J. Comput. Appl. Math. 79 (1997) 131-145.
- [4] J. M. Gutiérrez, J. M. Hernandez, M. A. Salanova, Accessibility of solutions by Newton's method, Internat. J. Comput. Math. 57 (1995) 239-247.
- [5] Z. Huang, A note on the Kantorovich theorem for Newton's iteration, J. Comput. Appl. Math. 47 (1993) 211-217.
- [6] L. V. Kantorovich, G. P. Akilov, Functional Analysis, Pergamon Press, Oxford Publications, Oxford, 1982.

Received: August 25, 2006