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Abstract

Data envelopment analysis technique which is developed based on

the mathematical programming, evaluates the relative efficiency of a set

of homogeneous decision making units. This paper shows the method of

Discriminant Analysis (DA), on Imprecise Data by Data Envelopment



724 F. Hosseinzadeh Lotfi et al

Analysis (DEA). DEA-Discriminant Analysis (DEA-DA) is designed to

identify the existence or non-existence of an overlap between two groups,

by separating hyperplane. In addition it predicts a new observation be-

long to which group. However there are similarities between DEA and

DA. DA is a method for separating two sets with previous knowledge

meanwhile DEA is a technique for separating two sets efficient and in-

efficient without previous knowledge. Also goal programming method

can be used for both of these methods.

Mathematics Subject Classification: Operations Research, No. 90

Keywords: Data Envelopment Analysis, Imprecise Data, Discriminate

Analysis

1. Introduction

Data envelopment analysis (DEA), occasionally called frontier analysis,

was first put forward by Charnes, Cooper and Rhodes in 1978 [2]. It is a

performance measurement technique which can be used for evaluating the rel-

ative efficiency of decision-making units (DMU) in organizations. Unlike the

original DEA models, we assume further that the levels of data (inputs and

outputs) are not known exactly. In fact, they are as imprecise, such as interval

data, ordinal data and fuzzy data. Cooper et al. (1999) addressed the problem

of imprecise data in DEA, in its general form. Discriminant Analysis (DA) is

a method to predict group membership of a new sampled observation. In DA,

it is assumed that all observations (G) are classified into two groups, Group1 (

G1) and Group 2 (G2 ), which have n1 and n2 members, respectively. Based on

the above description, in the absence of an overlap, we can have a separating

hyperplane between two groups, to form ptz = d where, p is the normal vector

and d is a constant value. Otherwise, in the existence of an overlap between

the two groups, discriminant process is achieved by the following two-steps:

(a) The classification and overlap identification and (b) The overlap handling.

Sueyoshi (1999) has been proposed a non-parametric approach for discrimi-
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nant analysis. This approach is referred to as “DEA-Discriminant Analysis

(DEA-DA)” . In this paper, we extend it for Imprecise data . The remaining

structure made in this article, is as follow: In Section 2 we give a backgroung,

in section 3 a model is introduced under discriminant analysis for imprecise

data. In section 4 we give an illustrative example and finally in section 5 con-

clusions are presented.

2. Background

Suppose that there are n observations zj = (xj , yj), (j = 1, ..., n) where

xj = (x1j , ..., xmj) is the j − th input vector and yj = (y1j, ..., ysj) is the j − th

output vector (j = 1, ..., n). Suppose that each observation has k indepen-

dent factors, denoted by (x1j , ..., xmj, y1j, ..., ysj) such that m + s = k. These

observations can be classified into two groups G1 and G2 , with n1 and n2 ob-

servations, respectively. Also it is assumed that n1 +n2 = n and G1

⋃
G2 = G.

All we need to do, is finding a hyperplane with the form of (α, β)t(x, y) = d

, such that (α, β)t(x, y) ≥ d for (x, y) ∈ G1 and (α, β)t(x, y) ≤ d − ε for

(x, y) ∈ G2. Note that (α, β)t(x, y) is a linear discriminant function, d is a

discriminant score of the first group (G1), and is a discrimination score of the

second group . The small positive number ε is used to avoid an obvious solu-

tion (i.e., all the weights are zero). Therefore we have:

∑m
i=1 αixij+

∑s
r=1 βryrj ≥ d, j ∈ J1 ,

∑m
i=1 αixij+

∑s
r=1 βryrj ≤ d−ε, j ∈ J2 (1)

where J1 = {j | zj = (xj , yj) ∈ G1}, J2 = {j | zj = (xj , yj) ∈ G2}
In system (1) all (xij , yij)(i = 1, ..., m, r = 1, ..., s, j = 1, ..., n) have certain

values.

Sueyoshi (1999) proposed a non-parametric approach for DEA-DA. Also

he introduced a type of non-parametric approach, referred to as “Extended

DEA-Discriminant Analysis” in the two stage classification possesses. Dis-

criminant process is achieved by the following two-steps: (a) The classification

and overlap identification and (b) The overlap handling.

Overlap Identification and Classification: The first step of DEA-DA is math-
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ematically formulated as follows:

Min ϕ =
∑

j∈J1
s+
1j +

∑
j∈J2

s−2j

S.t.
∑k

i=1 αizij + s+
1j − s−1j = d, j ∈ J1∑k

i=1 βizij + s+
2j − s−2j = d − ε, j ∈ J2 (2)∑k

i=1 αi = 1,∑k
i=1 βi = 1,

all slacks ≥ 0, αi ≥ 0, βi ≥ 0, i = 1, ..., k and d : unrestricted

It is assumed that the vectors α and β are normalized.

2.1. Fuzzy and Interval Data

A crisp set is normally defined as a collection of elements x ∈ X . Every

element can be either belong to or not belong to a set A, such as, A ⊆ X.

But, for a fuzzy set, a element of X can be belong to the set A, by a degree of

membership. Therefore, if X is a collection of objects denoted generally by x,

then a fuzzy set Ã in X is a of ordered pairs as follows:

Ã = {(x, μÃ(x))| x ∈ X}.
Where, μÃ(x) is called the membership function or grade of membership x in

Ã. The range of the membership function is a subset of the nonnegative real

numbers belong to (0, 1]. If SupxμÃ(x) = 1, then fuzzy set Ã is called normal.

Otherwise, A nonempty fuzzy set Ã can always be normalized by dividing

μÃ(x) by SupxμÃ(x). Hence, we can for convenience, assume that fuzzy sets

are normalized.

The set of elements that belong to the fuzzy set Ã at least to the degree

δ (δ > 0) is called the δ−level set and we show with Aδ:

Aδ = {x ∈ X| μÃ(x) ≥ δ}
Note that, if 0 < δ1 < δ2 then Aδ2 ⊆ Aδ1 . Finally, a fuzzy number Ã is

LR−type if there exist reference function L (for left) , R (for right) and scalars

δ1 > 0, δ2 > 0 with
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μÃ(x) =

{
L(m−x

δ1
) x ≤ m

R(x−m
δ2

) x ≥ m

where the real number m is called mean value of Ã and δ1, δ2 are called the left

and right spreads, respectively. Symbolically, Ã is denoted to (m, δ1, δ2)LR.

Now, suppose that x̃ij and ỹrj are the i − th input and the r − th output for

DMUj with continues membership function, then the δ−level set of x̃ij and ỹrj

is the interval [xL
ij,δ, x

U
ij,δ] and [yL

rj,δ, y
U
rj,δ], where xL

ij,δ and yL
rj,δ are lower bounds

and xU
ij,δ and yU

rj,δ are upper bounds of any δ−level sets, respectively. Then for

a fixed δ ∈ (0, 1], we can suppose that the i − th input and the r − th output

of DMUj are as interval data as follow:

xij ∈ [xL
ij,δ, x

U
ij,δ], yrj[y

L
rj,δ, y

U
rj,δ]

Now,let us suppose that all observations (xj, yj), (j = 1, ..., n) are inter-

val data (recall that fuzzy data are interval data with δ−level), i.e., xij ∈
[xL

ij , x
U
ij ], (i = 1, ..., m, j = 1, ..., n) and yrj ∈ [yL

rj, y
U
rj], (r = 1, ..., s, j =

1, ..., n) with positive constant lower and upper bounds of the interval . Then,

according to (1) we have:

∑m
i=1 αi[x

L
ij , x

U
ij] +

∑s
r=1 βr[y

L
rj, y

U
rj] ≥ d, j ∈ J1∑m

i=1 αi[x
L
ij , x

U
ij ] +

∑s
r=1 βr[y

L
rj, y

U
rj] ≤ d − ε, j ∈ J2 (3 − a)

It is obvious that the preceding system is satisfied, incase the foregoing system

is satisfied.

Note that, system (3-a) in order to fuzzy data with α−level convert as follow:∑m
i=1 αi[x

L
ij,δ, x

U
ij,δ] +

∑s
r=1 βr[y

L
rj,δ, y

U
rj,δ] ≥ d, j ∈ J1∑m

i=1 αi[x
L
ij,δ, x

U
ij,δ] +

∑s
r=1 βr[y

L
rj,δ, y

U
rj,δ] ≤ d − ε, j ∈ J2 (3 − b)

With respect to (3-a) and (3-b), we obtain system (4-a) and system (4-b).

∑m
i=1 αix

tij
ij +

∑s
r=1 βry

trj

rj ≥ d,

j ∈ J1, tij ∈ {Lij, Uij}, (i = 1, ..., m), trj ∈ {Lrj , Urj}, (r = 1, ..., s)
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∑m
i=1 αix

tij
ij +

∑s
r=1 βry

trj

rj ≤ d − ε,

j ∈ J1, tij ∈ {Lij, Uij}, (i = 1, ..., m), trj ∈ {Lrj , Urj}, (r = 1, ..., s) (4− a)

∑m
i=1 αix

tij
ij,δ +

∑s
r=1 βry

trj

rj,δ ≥ d,

j ∈ J1, tij ∈ {Lij,δ, Uij,δ}, (i = 1, ..., m), trj ∈ {Lrj,δ, Urj,δ}, (r = 1, ..., s)∑m
i=1 αix

tij
ij,δ +

∑s
r=1 βry

trj

rj,δ ≤ d − ε,

j ∈ J1, tij ∈ {Lij,δ, Uij,δ}, (i = 1, ..., m), trj ∈ {Lrj,δ, Urj,δ}, (r = 1, ..., s) (4− b)

Note that there are 2m+s constraints for each DMU in systems (4). In other

words, any interval observation is corresponded to 2m+s vertex points. Figure

1 depicts how a hyperplane exactly separates two groups G1 and G2 . Such a

hyperplane is called a “strongly separating hyperplane”. Meanwhile, Figure 2

depicts another case, in which all or parts of some interval observations in G1

, may not belong to G1 . Similarly, all or parts of some interval observations

in G2 may not belong to G2 . The hyperplane separating the two groups in

case 2, is only called a “separating hyperplane”. In this case, an overlap has

occurred.

�

�
o x

y

G1

G2

Strongly separating hyperplane

��������������������

Fig. 1. A strongly separating hyperplane
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�

�
o x

y

G1

G2

separating hyperplane

��������������������

Fig. 2. A separating hyperplane

Now, we show that Sueyoshi model always can not specify an overlap

between two sets as G1 and G2. In order to this purpose, first we show our

claim with an example. Then we introduce Sueyoshi modified model.

2.2. A Numerical Example

Consider G1 and G2 to be the two groups of data with one input and one

output factor as follows (Table 1):

Table 1. The value of inputs and output
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Groups DMUj x y

Group 1 ( G1) P1 1 2

P2 2 3

P3 1 4

P4 2 5

Group 2 ( G2) Q1 5 6

Q2 6 6

Q3 6 8

Q4 7 9

Q5 8 7

Using model (2) for the classification of such observations, the optimal solution

is obtained as follows:

α∗
1 = 0, α∗

2 = 1, β∗
1 = 1, β∗

2 = 0, d∗ = 6.1, ϕ∗ = 13.4

In order words, we will have:

0x + 6y ≥ 6.1, j ∈ J1

1x + 0y < 6.1, j ∈ J2

Since the total deviations’s value is 13.4, there is overlap between two groups

G1 and G2 , (Fig 3). Clearly, classification between two groups G1 and G2

cannot achieve correctly (With regards to Figure 3). Now let us substitute G1

with G2 in Table 1, and use model (2) for classification of them. Then the

optimal solution is obtained as follows:

α∗
1 = 1, α∗

2 = 0, β∗
1 = 0.0333, β∗

2 = 0.9667, d∗ = 5, ϕ∗ = 0

In other words, we will have:

1x + 0y ≥ 5, j ∈ J1

0.0333x + 0.9667y < 5, j ∈ J2

This means, there is not overlap between two groups (Fig 4).
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�

�
o x

y

G2

G1

x < 6.1, j ∈ J2

y ≥ 6.1, j ∈ J1

�

�
�

�

�

�

�

�

�

� �

Fig. 3. Existence of overlap
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x ≥ 5, j ∈ J1

0.0333x + 0.9667y < 5, j ∈ J2
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�

�

�

�

�
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Fig. 4. Not existence of overlap

The above example shows that the Sueyoshi model should be modified as

follow:

Min ϕ =
∑

j∈J1
s+
1j +

∑
j∈J2

s−2j

S.t.
∑k

i=1 αizij + s+
1j − s−1j = d, j ∈ J1∑k

i=1 βizij + s+
2j − s−2j = d − ε, j ∈ J2 (5)∑k

i=1 αi = 1 − 2u,∑k
i=1 βi = 1 − 2v,
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u, v ∈ {0, 1}
all slacks ≥ 0, αi ≥ 0, βi ≥ 0, i = 1, ..., k and d : unrestricted

where zj = (xj , yj). Since u, v ∈ {0, 1} we have:
∑k

i=1 αi = 1, or
∑k

i=1 αi = −1

and
∑k

i=1 βi = 1, or
∑k

i=1 βi = −1.

By using model (5) for above example, when G1 = {P1, P2, P3, P4} and G2 =

{Q1, Q2, Q3, Q4, Q5} we obtain: α∗
1 = −1, α∗

2 = 0, β∗
1 = −2.95, β∗

2 = 1.95, d∗ =

−2, ϕ∗ = 0. In other words we have:

−x ≥ −2, for (x, y) ∈ G1 and −2.95x + 1.95y ≤ −2, for (x, y) ∈ G2. This

means that there is not overlap between two groups (Fig 5).

�

�
o x

y

G2

G1

−x ≥ −2, j ∈ J1

−2.95x + 1.95y < −2, j ∈ J2		
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�
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Fig. 5. No existence of overlap with model (2)

3. The Proposed Method

The general method in the overlap identification of fuzzy data are as fol-

lows: First, we set:

Γ− = {tij | tij ∈ {Lij, Uij}, i = 1, ..., m}
Γ+ = {trj | trj ∈ {Lrj , Urj}, r = 1, ..., s}
Classification and Overlap Identification

The proposed model for overlap identification with respect to system (3-b)

is given as follows:

Min ϕ =
∑

j∈J1

∑
(t1j ...tmj)∈Γ− s

+t1j ...tmj

1j +
∑

j∈J2

∑
(t1j ...tsj)∈Γ+ s

−t1j ...tsj

2j
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S.t.∑m
i=1 αix

tij
ij,δ+

∑s
r=1 βry

trj

rj,δ+s
+t1j ...tmj

1j −s
−t1j ...tsj

1j = d, j ∈ J1, tij ∈ {Lij,δ, Uij,δ},
(i = 1, ..., m), trj ∈ {Lrj,δ, Urj,δ}, (r = 1, ..., s)∑m

i=1 αix
tij
ij,δ +

∑s
r=1 βry

trj

rj,δ + s
+t1j ...tmj

2j − s
−t1j ...tsj

2j = d − ε, j ∈ J1, tij ∈
{Lij,δ, Uij,δ}, (i = 1, ..., m), trj ∈ {Lrj,δ, Urj,δ}, (r = 1, ..., s) (6)∑m

i=1 αi +
∑s

r=1 βr = 1 − 2u

s
+t1j ...tmj

1j , s
−t1j ...tsj

1j , s
+t1j ...tmj

2j , s
−t1j ...tsj

2j ≥ 0, j = 1, ..., n, tij ∈ {Lij,δ, Uij,δ}, (i =

1, ..., m), trj ∈ {Lrj,δ, Urj,δ}, (r = 1, ..., s), u, v ∈ {0, 1} , α, β d : unrestricted

where s
+t1j ...tmj

1j and s
−t1j ...tsj

1j are respectively positive and negative devia-

tions of a linear discriminant function h(δ) =
∑m

i=1 αixij,δ +
∑s

r=1 βryrj,δ from

a discriminant score d in G1. The positive deviation (s
+t1j ...tmj

1j > 0, j ∈
J1, tij ∈ {Lij,δ, Uij,δ}, (i = 1, ..., m)) is used to minimize the incorrect clas-

sification of the j − th observation in G1 . Meanwhile, the negative deviation

(s
−t1j ...tsj

1j > 0, j ∈ J1, trj ∈ {Lrj,δ, Urj,δ}, (r = 1, ..., s)) shows the correct clas-

sification of the j − th observation in G1 . Also, s
+t1j ...tmj

2j and s
−t1j ...tsj

2j are

respectively positive and negative deviations of the same linear discriminant

function h(δ) =
∑m

i=1 αixij,δ +
∑s

r=1 βryrj,δ from a discriminant score d − ε in

G2. The positive number, ε , is used to avoid obvious solution (all weights

equal to zero). In this case, the negative deviation (s
−t1j ...tsj

2j > 0, j ∈ J2, trj ∈
{Lrj,δ, Urj,δ}, (r = 1, ..., s)) indicates an incorrect group classification, while

the positive deviation (s
+t1j ...tmj

2j > 0, j ∈ J2, tij ∈ {Lij,δ, Uij,δ}, (i = 1, ..., m))

represents a correct classification.

Now, let α∗, β∗ vectors and d∗ be the optimal solutions of (6). Then, a

new observation with γ−level, (xp,γ , yp,γ) ∈ ([xL
p,γ , x

U
p,γ ], [y

L
p,γ, y

U
p,γ]) is classified

by the following rule:

(a) If
∑m

i=1 α∗
i x

tip
ip,γ +

∑s
r=1 β∗

ry
trp
rp,γ ≥ d∗, tip ∈ {Lip,γ , Uip,γ}, (i = 1, ..., m), trp ∈

{Lrp,γ , Urp,γ}, (r = 1, ..., s) then p ∈ J1 with γ−level (7).

(b) If
∑m

i=1 α∗
i x

tip
ip,γ+

∑s
r=1 β∗

ry
trp
rp,γ ≤ d∗−ε, tip ∈ {Lip,γ , Uip,γ}, (i = 1, ..., m), trp ∈

{Lrp,γ , Urp,γ}, (r = 1, ..., s) then p ∈ J2. with γ−level

(c) If
∑m

i=1 α∗
i x

tip
ip,γ +

∑s
r=1 β∗

ry
trp
rp,γ < d∗, ∃tip ∈ {Lip,γ , Uip,γ}, (i = 1, ..., m), trp ∈
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{Lrp,γ , Urp,γ}, (r = 1, ..., s) then then all or parts of the new fuzzy observa-

tion belong to G2. And also, if
∑m

i=1 α∗
i x

tip
ip,γ +

∑s
r=1 β∗

ry
trp
rp,γ > d∗, ∃tip ∈

{Lip,γ , Uip,γ}, (i = 1, ..., m), trp ∈ {Lrp,γ, Urp,γ}, (r = 1, ..., s) then all or parts

of the new fuzzy observation belong to G1 . Hence, we say that, there is over-

lap in this case.

Theorem 1. Model (6) has always a bounded optimal solution. [5]

Theorem 2. Suppose that F1 = {j|j ∈ J1} and F2 = {j|j ∈ J2} also

assume that C(F1) and C(F2) be convex hull of F1 and F2, respectively. Then

C(F1)
⋂

C(F2) = ∅ if and only if ϕ∗ = 0 in model (6).[5]

4. An Illustrative Example

Consider two groups of fuzzy data with one input and one output (Table 2) as

follows:

Table 2. The inputs and outputs values

DMUs Observation j Input (m, δ1, δ2) output (m, δ1, δ2)

Group 1 ( G1) A (5,3,4) (6,2,4)

B (7,1,3) (10,2,6)

C (9,2,5) (10,2,6)

Group 2 ( G2) D (3,2,5) (4,4,2)

E (7,3,2) (5,4,3)

Using model (6), and δ−level (δ = 0.1), we obtain: α∗+
1 = 0.2289, α∗−

1 =

0, α∗+
2 = 0.7711, α∗−

2 = 0, d∗ = 6. Then, we will obtain: 0.2289x+0.7711y = 6
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�
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D

A

B

E
C

G1

G2 0.2289X + 0.7711Y ≤ 6

0.2289X + 0.7711Y ≥ 6

���������������



�



�

Fig.6. Illustration of example 4

Figure 6 shows a separating hyperplane between two groups G1 and G2 in

dimension space (x, y). It is clear that we haven’t got a strongly separating

hyperplane. Therefore, an overlap occurs between two groups, G1 and G2 .

This hyperplane is: h(0.1) = 0.2289X + 0.7711Y = 6.

5. Conclusion

The purpose of this study was an extension of DEA-DA (Sueyoshi, 1999), upon

imprecise data, it identifies the measure of the overlapped regions of imprecise

data, if there are any. When all or parts of an observation are overlapped

between two groups, then we can clarify both the similarities that each of two

groups has in common, and the differences the two groups owe. Furthermore,

it is distinguished how much of an individual unit owes the characteristics of

either groups. Also, in cause of data’s nature, the overlap identification may

be all or parts of an observation.
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