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Abstract

In this paper we first show a model using L1-Norm for locating
a facility in a convex set and then we use it for fuzzy data in linear
programming problems and especial case of integer linear programming.
Locating a unit is connected to its replacing in a set, which is achieved
with regard to other facilities. Different ideas can exist in facilities
locating decision. In this paper we intend to minimize weight summation
of distance between new facilities and other facilities. Note that it is
important to select the distance kind in locating problems.
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1. Introduction
The facilities programming determine how to use the best case possible

for achievement of activities with respect to the existing a tools in our purpose
direction [1, 3, 4, 5]. This aim is mostly contained of locating facilities and
designing them. In this paper we present a model for locating a facility in a
convex set.
Holmes (1930) [2], introduced an acceptable purpose for locating industry fa-
cilities, which is related to the total effective factors over cost considering both
the value of capital and eligible quantity.
In section two we have glance to using of a quantity model in locating facili-
ties. In section three we introduce a model for locating a facility in a convex
set. In section four we give a practical example. A method for fuzzy linear
programming problems and location for fuzzy data are introduced in sections
5 and 6, respectively. In finally conclusion is achieved in the last section.

2. Use of Quantity Models in Locating Facilities
Consider P1, P2, ..., Pm to be a set of m machine in a workshop. Suppose

that P1 = (a1, b1), P2 = (a2, b2), ..., Pm = (am, bm) show their situations. Also,
consider a new machine Z with coordinates Z=(x,y). Now the question is what
the best place for the created machine Z as, considering the minimization of
the cost of relationship between them.
Regarding the performance, we assume the movement cost between the new
and the i − th machine to be proportional to the distance between Z and Pi

with weight of wi . Therefore, the objective function will be as follow:

f(x, y) =
∑m

i=1 wid(Z, Pi)

Where d(Z, Pi) show distant between the new machine and i − th machine.
Then f(x, y) will be the total cost of the new machine interaction with other
machines. Therefore, the purpose of this problem will be to minimize f(x, y),
and with use of L1 -Norm we have:

Min f(x, y) = Min
∑m

i=1 wi{|x − ai| + |y − bi|}

Since variables x and y are independent, then we obtain the below formula:

Min f(x, y) = Min
∑m

i=1 wi|x − ai| + Min
∑m

i=1 wi|y − bi|

Note that the above objective function is nonlinear which will be linear with
an eligible transformation.
3. Locating Facilities in a Convex Set

Suppose that we have a set of L machines in a workshop for which the
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captured spaced are as intervals. Assume that (xj , yj), j = 1, ..., L correspond
to their coordinates. Also, suppose that we divide the remaining region of the
workshop to K convex regions (Here we consider convex regions as rectangle
ones) which are given as follows:

Sj = {(x, y)|aj ≤ x ≤ bj , cj ≤ y ≤ dj} for j = 1, ..., K.

Now, we want to find a point in one of the K regions for a new machine
such the objective function is minimized. To gain this, we introduce the below
nonlinear model:

Min d =
∑L

j=1{|x − xj| + |y − yj|}
S.t. (1)
a1 ≤ x ≤ b1, c1 ≤ y ≤ d1

or
a2 ≤ x ≤ b2, c2 ≤ y ≤ d2

or
...
ak ≤ x ≤ bk, ck ≤ y ≤ dk

Model (1) is convertible to below model (model (2)):

Min d =
∑L

j=1{|x − xj | + |y − yj|}
S.t. (2)
x ≤ b1 + Mα1

x ≥ a1 − Mα1

y ≤ d1 + Mα1

y ≥ c1 − Mα1

x ≤ b2 + Mα2

x ≥ a2 − Mα2

y ≤ d2 + Mα2

y ≥ c2 − Mα2
...
x ≤ bk + Mαk

x ≥ ak − Mαk

y ≤ dk + Mαk

y ≥ ck − Mαk

α1 + α2 + · · · + αk = k − 1
αj ∈ {0, 1}, j = 1, ..., k

Note, the objective function in model (2) is nonlinear. We use the below
Shapiro transformation for its linearization.
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x − xj = uj − vj , y − yj = wj − zj , j = 1, ..., L

With respect to the above transformation, above we have:

ujvj = 0, uj + vj > 0 and zjwj = 0, zj + wj > 0, j = 1, ..., L (3)

and also we have:

|x − xj | = uj + vj , |y − yj| = wj + zj , j = 1, ..., L (4)
With using relations (3) and (4) in model (2), we obtain below model :

Min d =
∑L

j=1{(uj + vj) + (wj + zj)}
S.t. (5)
x ≤ bt + Mαt, t = 1, ..., k
x ≥ at − Mαt, t = 1, ..., k
y ≤ dt + Mαt, t = 1, ..., k
y ≥ ct − Mαt, t = 1, ..., k
α1 + α2 + · · · + αk = k − 1
x − xj = uj − vj , y − yj = wj − zj , j = 1, ..., L
αt ∈ {0, 1}, t = 1, ..., k
uj, vj , zj, wj ≥ 0, j = 1, ..., L

4. Examples
4.1. A Numerical Example

Consider the problem of locating a new machine in an existing layout con-
sisting of five machines P1, P2, P3, P4 and P5. The coordinate of machines above
are presented in Table 1. Also consider the four possible regions S1, S2, S3 and
S4, in order to create a new machine in Table 2. The problem is to obtain an
optimal location for the region Sj, j = 1, ..., 4, so that the sum of the distances
(street distance) of the new machine from the five other machines is minimized.

Table 1. The coordinates of machines
x y

P1 4 4
P2 2 2
P3 2 5
P4 4 1
P5 6 5

Table 2. The interval coordinates of regions
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xL xU yL yU

S1 1 2 6 7
S2 2 3 3 4
S3 4 5 5 7
S4 5 6 2 3

Using model (5) we obtain:
u∗

1 = v∗
1 = v∗

2 = v∗
3 = v∗

4 = u∗
4 = u∗

5 = z∗1 = z∗2 = z∗3 = z∗4 = z∗5 = w∗
3 = w∗

5 =
α∗

3 = 0, u∗
2 = 2, u∗

3 = 2, v∗
5 = 2, w∗

1 = 1, w∗
2 = 3, w∗

4 = 4, α∗
1 = 1, α∗

2 = 1, α∗
4 =

1, x∗ = 4, y∗ = 5, d∗ = 14.

Hence, with regard to obtained solution we find (x∗, y∗) = (4, 5) ∈ S3 and the
optimal value d∗ = 14.

4.2. A Practical Example
Consider 6 important industrial regions in a city which receive compulsory

services from a fire station. These industrial regions are located in Table 3.
Also three sites are considered for building a fire station according to Table 4.
The problem is to determine a site considering of three sites for building a fire
station, so that the sum of the distances (street distance) of the fire station
from the six industrial regions is minimized.

Table 3. The coordinates of industrial regions
x y

A 20 15
B 25 25
C 13 32
D 25 14
E 4 21
E 18 8

Table 4. The interval coordinates of sites
xL xU yL yU

S1 4 6 8 10
S2 10 12 18 23
S3 32 33 18 20

Using model (5) we obtain:
u∗

1 = u∗
2 = u∗

3 = u∗
4 = v∗

5 = v∗
6 = z∗1 = z∗4 = z∗5 = z∗6 = w∗

2 = w∗
3 = w∗

5 = α∗
2 =

0, v∗
1 = 8, v∗

2 = 13, v∗
3 = 1, v∗

4 = 13, v∗
5 = 8, v∗

6 = 6, z∗2 = 4, z∗3 = 11, w∗
1 = 6, w∗

4 =
7, w∗

6 = 13, α∗
1 = 1, α∗

3 = 1, x∗ = 12, y∗ = 21, d∗ = 90.

Therefore the optimal solution is (x∗, y∗) = (12, 21) which lies in site S3, and
the nearest distance of instituted site from the industrial regions is d∗ = 90.
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Note that in the above example, we assume that the weights of the industrial
regions and sites are equal.

5. A Method for Fuzzy Linear Programming
5.1 Preliminaries
A Fuzzy Linear Programming (FLP) is concerned with the optimization (min-
imization or maximization) of a fuzzy linear function while satisfying a set of
linear equality and/or inequality fuzzy constraints. In this paper FLP with
Right Hand Solution (R.H.S) is considered (T. Allahviranloo) [6].

5.1.1 Definition
An ordered pair of functions T = (u(r), ū(r)), 0 ≤ r ≤ 1, is called a fuzzy
number if and only if it satisfied in the following requirements.
(1) u(r) is a bounded left continues non-decreasing function over [0,1].
(2) ū(r) is a bounded left continues non-increasing function over [0,1].
(3) u(r) and ū(r) are right continues in 0.
(4) u(r) ≤ ū(r), 0 ≤ r ≤ 1.
where u(r) = wr + (c − w) and ū(r) = −wr + (c + w), 0 ≤ r ≤ 1. which
c, w ∈ R, c = Core(T ) and w = W (T ) ≥ 0.
T = (c, w) is called Symmetric Triangular Fuzzy Number (STFN). Let ST be
the set of all SFTN.
A crisp number is simply represented by u(r) = ū(r) = α, 0 ≤ r ≤ 1.

5.1.2 Theorem
If T = (c1, w1), U = (c2, w2) be SFTNs, k ∈ R, X̃ ∈ ST and A be a matrix
then:
(1) T = U if and only if c1 = c2 and w1 = w2.
(2) T + U = (c1 + c2, w1 + w2).
(3) kT = (kc1, |k|w1).
(4) AX̃ = (A Core(X̃); |A|W (X̃)), which |A|ij = |aij |.

5.1.3 Definition
Let T = (c1, w1), U = (c2, w2) be SFTNs. We say T<̃U if and only if
(1) c1 < c2 or
(2) c1 = c2 and w1 < w2.
And T ≤̃U if and only if T<̃U or T = U .

5.2 Fuzzy Linear Problem
Consider fuzzy linear programming as follows:
Min CX̃
S.t. AX̃ = b̃

X̃ ∈ ST, X̃≥̃0 (6)
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which A ∈ Rm×n, C ∈ Rn and b̃ is an triangular fuzzy vector. Now, we reduce
problem (6) to two following problems.

Min CX
S.t. AX = Core(b)

X ≥ 0 (7)
and
Min |C|Y
S.t. |A|Y = W (b)

Y ≥ 0 (8)
where |A|ij = |aij |, |C|i = |ci|.

5.2.1 Theorem
X̃ is a feasible solution of problem (6) if and only if X = Core(X̃) is a feasible
solution of problem (7) and Y = W (X̃) is a feasible solution of problem (8).

5.2.2 Theorem
X̃∗is an optimal solution of problem (6) if and only if X∗ = Core(X̃∗) is an
optimal solution of problem (7) and Y ∗ = W (X̃∗) is an optimal solution of
problem (8).

5.2.3 Theorem
Problem (6) is infeasible if and only if problem (7) is infeasible or problem (8)
is infeasible.

5.2.4 Theorem
If problem (6) be feasible then problem (6) has unbounded optimal solution
if and only if problem (7) has unbounded optimal solution or problem (8) has
unbounded optimal solution.
The proofs of all the above theorems are given T. Allahviranloo (2005) [6].

5.2.5 Example
Consider the fuzzy linear programming problem as below:
Min − x̃1 − 2x̃2 + x̃3

S.t x̃1 + x̃2 + x̃3 + x̃4 = (6r − 2,−6r + 10)
− x̃1 + 2x̃2 − 2x̃3 + x̃5 = (4r + 2,−4r + 10)
2x̃1 + x̃2 + x̃3 + x̃6 = (5r,−5r + 10)
x̃1, x̃2, x̃3, x̃4, x̃5, x̃6≥̃0

Now we should be two problems in below:

Min − x1 − 2x2 + x3
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S.t x1 + x2 + x3 + x4 = 4
− x1 + 2x2 − 2x3 + x5 = 6
2x1 + x2 + x3 + x6 = 5
x1, x2, x3, x4, x5, x6≥0

By using simplex method we obtain: X∗ = (2
3
, 10

3
, 0, 0, 0, 1

3
)t

and
Min y1 + 2y2 + y3

S.t y1 + y2 + y3 + y4 = 6
y1 + 2y2 + 2y3 + y5 = 4
2y1 + y2 + y3 + y6 = 5
y1, y2, y3, y4, y5, y6≥0

Then we have: Y ∗ = (0, 0, 0, 6, 4, 5)t

Therefore the optimal solution of the above example will be:

X̃∗ = ((2
3
, 2

3
), (10

3
, 10

3
), (0, 0), (6r− 6,−6r +6), (4r− 4,−4r +4), (5r− 14

3
,−5r +

16
3
))t

6. Locating Facilities in a Convex Set with Fuzzy Data
Suppose that we have a set of L machines in a workshop for which the

captured spaced are as intervals. Assume that (x̃j , ỹj), j = 1, ..., L correspond
to their coordinates, (the sign “∼” is used for fuzzy numbers). Also, suppose
that we divide the remaining region of the workshop to K convex regions (Here
we consider convex regions as rectangle ones) which are given as follows:
Sj = {(x, y)| ãj≤̃x≤̃b̃j , c̃j≤̃y≤̃d̃j} for j = 1, ..., K.
where ãj , b̃j , c̃j and d̃j for j = 1, ..., K are triangular systematic fuzzy numbers.
It is obvious that (x, y) also is fuzzy number. Now, we want to find a point
in one of the K regions for a new machine such the objective function is min-
imized. To gain this, we introduce the below nonlinear model:

Min d =
∑L

j=1{|x̃ − x̃j | + |ỹ − ỹj|}
S.t. (9)
ã1≤̃x̃≤̃b̃1, c̃1≤̃ỹ≤̃d̃1

or
ã2≤̃x̃≤̃b̃2, c̃2≤̃ỹ≤̃d̃2

or
...
ãk≤̃x̃≤̃b̃k, c̃k≤̃ỹ≤̃d̃k

Equivalently, according model (5) in section 3, we have the below model for
fuzzy numbers:
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Min d =
∑L

j=1{(ũj + ṽj) + (w̃j + z̃j)}
S.t. (10)
x̃≤̃b̃t + M̃αt, t = 1, ..., k
x̃≥̃ãt − M̃αt, t = 1, ..., k
ỹ≤̃d̃t + M̃αt, t = 1, ..., k
ỹ≥̃c̃t − M̃αt, t = 1, ..., k
α1 + α2 + · · · + αk = k − 1
x̃ − x̃j = ũj − ṽj , ỹ − ỹj = w̃j − z̃j , j = 1, ..., L
αt ∈ {0, 1}, t = 1, ..., k
ũj, ṽj , z̃j, w̃j≥̃0, j = 1, ..., L

The problem (10) can be converted to standard form as follows:

Min d =
∑L

j=1{(ũj + ṽj) + (w̃j + z̃j)}
S.t. (11)
x̃ + p̃t − M̃αt = b̃t, t = 1, ..., k
x̃ − q̃t + M̃αt = ãt, t = 1, ..., k
ỹ + r̃t − M̃αt = d̃t, t = 1, ..., k
ỹ − s̃t + M̃αt = c̃t, t = 1, ..., k
α1 + α2 + · · · + αk = k − 1
x̃ − ũj + ṽj = x̃j, ỹ − w̃j + z̃j = ỹj, j = 1, ..., L
αt ∈ {0, 1}, t = 1, ..., k
p̃t, q̃t, r̃t, s̃t≥̃0, t = 1, ..., k
ũj, ṽj , z̃j, w̃j≥̃0 j = 1, ..., L

In order to obtain the optimal solution of problem (11), we solve two problems
in below:

Min d =
∑L

j=1{(uj + vj) + (wj + zj)}
S.t. (12)
x + pt − Mαt = Core(bt), t = 1, ..., k
x − qt + Mαt = Core(at), t = 1, ..., k
y + rt − Mαt = Core(dt), t = 1, ..., k
y − st + Mαt = Core(ct), t = 1, ..., k
α1 + α2 + · · · + αk = k − 1
x − uj + vj = Core(xj), y − wj + zj = Core(yj), j = 1, ..., L
αt ∈ {0, 1}, t = 1, ..., k
pt, qt, rt, st ≥ 0, t = 1, ..., k
uj, vj , zj, wj ≥ 0 j = 1, ..., L
and
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Min d =
∑L

j=1{(uj + vj) + (wj + zj)}
S.t. (13)
x + pt + Mαt = W (bt), t = 1, ..., k
x + qt + Mαt = W (at), t = 1, ..., k
y + rt + Mαt = W (dt), t = 1, ..., k
y + st + Mαt = W (ct), t = 1, ..., k
α1 + α2 + · · · + αk = k − 1
x + uj + vj = W (xj), y + wj + zj = W (yj), j = 1, ..., L
αt ∈ {0, 1}, t = 1, ..., k
pt, qt, rt, st ≥ 0, t = 1, ..., k
uj, vj , zj, wj ≥ 0 j = 1, ..., L

Note that, constrain
∑k

i=1 αi = k − 1, αi ∈ {0, 1}, has repeated in the models
(12) and (13). We call it as “equivalents conserving constrain” between two
model (12) and (13), because any constrain in model (12) is correspond to
one constrain in model (13), for each variable (binary variable) of equivalents
conserving constrain. Also note the theorem 5.2.2 is satisfied when the optimal
values of the variables of equivalents conserving constrain in models (12) and
(13) are same.

6.1 Example
Consider an example is given in section 4.1 with symmetric triangular fuzzy
number as follow (Tables 5 and 6):

Table 5. The coordinates of machines
(Core(x̃),W (x̃)) (Core(ỹ), W (ỹ))

P1 (2,4) (2,4)
P2 (1,2) (1,4)
P3 (2,1) (3,5)
P4 (3,4) (2,1)
P5 (2,6) (4,5)

Table 6. The interval coordinates of regions
(Core(x̃L),W (x̃L))(Core(x̃U ),W (x̃U )) (Core(ỹL),W (ỹL))(Core(ỹU ),W (ỹU ))

S1 (1,2) (12,1) (6,2) (7,1)
S2 (2,2) (13,3) (2,4) (4,3)
S3 (4,1) (5,2) (4,2) (2,6)
S4 (5,2) (6,4) (1,2) (2,3)

Using models (12) and (13), the optimal solution is obtained as follows:

x∗ = (5, 1), y∗ = (1, 1), p∗1 = (7, 0), p∗2 = (8, 2), p∗3 = (0, 1), p∗4 = (1, 3), q∗1 =
(4, 1), q∗2 = (3, 1), q∗3 = (1, 0), q∗4 = (0, 1), r∗1 = (6, 0), r∗2 = (3, 2), r∗3 = (3, 5), r∗4 =
(1, 2), s∗1 = (5, 1), s∗2 = (1, 3), s∗3 = (3, 1), s∗4 = (0, 1), u∗

1 = (4, 0), u∗
2 = (4, 1), u∗

3 =
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(3, 0), u∗
4 = (2, 3), u∗

5 = (3, 2), v∗
1 = (0, 0), v∗

2 = (0, 0), v∗
3 = (0, 0), v∗

4 = (0, 0), v∗
5 =

(0, 0), w∗
1 = (0, 3), w∗

2 = (0, 3), w∗
3 = (0, 4), w∗

4 = (0, 0), w∗
5 = (0, 4), z∗1 =

(1, 0), z∗2 = (0, 0), z∗3 = (2, 0), z∗4 = (1, 0), z∗5 = (4, 0), α∗
1 = 1, α∗

2 = 1, α∗
3 =

1, α∗
4 = 1, and d∗ = 24.

Since optimal values of the variables related to equivalents supervisor constrain
is same in models (12) and (13), therefore the obtained optimal solution from
example 6.1 is acceptable for a fuzzy problem.

7. Conclusion
In this paper we presented a model for finding an optimal location as a

linear program for a facility with respect to the other facilities and then use it
for fuzzy data. Here we use street distance (L1-Norm) for finding the optimal
location. Also in order to avoid congestion, we suppose that an eligible site
must be as interval. Finally, in order to locate n (n > 1) new facilities in a
convex set, we suggest a method by which the distance between a new facility
and all the other existing facilities and the new ones is minimized.
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