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Abstract

This paper offers an extension of obtaining an eligible benchmark
using the concept of input contraction on interval data. Here, it is
worthwhile obtaining most proportionality benchmark, which it will be
most similarity to the evaluated Interval Decision Making Unit (IDMU).
Concept of similarity means that the evaluated IDMU and its bench-
mark have inputs and outputs closest to each other. In continue, we
give concept of contract (input contract) such that it gets possible to
obtain shortest path to efficient subsets.
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1. Introduction

Data Envelopment Analysis (DEA) is a non-parametric method for evaluating
the relative efficiency of Decision Making Units (DMUs) of multiple inputs and
outputs [5]. The original DEA models (Charnes et al (1978)[1], Banker et. al
(1984)[2], assume that inputs and outputs are measured by exact values and
the value of efficiency be assessed on base relationship between the evaluated
unit and its projection point on efficient frontier. Using DEA models for eval-
uating relative efficiency of DMUs, usually give score 1 for a set of efficient
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DMUs and less than 1 for inefficient DMUs. We know, technical inefficient re-
late a failure of DMUs in order to obtain maximal outputs using of inputs. In
order to improve technical efficient, obtaining drawback actions and recognize
eligible ways for use the better than inputs have special important.

2. Background

2.1. Efficiency improvement
Some question posed by inefficient DMUs in management programs are “How
can I become efficient?” or “What am I doing wrong? ”. A reasonable strategy
would be that, after the DMU is informed that it is inefficient, its manager
visits some of the efficient DMUs to observe how they do things. This bench-
marking procedure is common in DMU management programs.
A non-trivial question here is how to choose which of the efficient DMUs it
should visit. It seems that an inefficient DMU will prefer to visit the efficient
DMU that is most similar to it [3].

2.2 Definition 1
Koopmans (1951)[8] defines a DMU as technically efficient if and only if, in-
creasing any output or decreasing any input is possible only by decreasing
some other output or increasing some other input.

2.3 Definition 2
Here we present a definition of input isoquant as
Isoq L(Y ) = {X ∈ Rm

+ : X ∈ L(Y ), λX /∈ L(Y ), λ ∈ [0, 1)}. (1)

Where L : Rs
+ → Rm

+ is a mapping from the output vector Y ∈ Rs
+ into the

set of input vectors X ∈ Rm
+ that allow to produce Y . It is mentioned that

in order to two inputs and one constant output with constant return to scale,
L(Y ) is Farrell frontier (see Fig. 1).
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Fig. 1. Farrell frontier
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2.4 Definition 3
An efficient subset of the isoquant is defined as
Eff L(Y ) = {X ∈ Rm

+ : X ∈ L(Y ), X̂ ≤ X, X̂ /∈ L(Y )}. (2)

2.5 Definition 4
Farrell (1957)[6] presented a definition of efficiency that can be achieved hold-
ing constant the output vector as
F (X,Y ) = Min{θ : θX ∈ L(Y ), θ ∈ R+}. (3)
This measure shrinks the input vector along a ray until a point in the isoquant
is reached. Note that Farrell efficiency is done with respect to the isoquant,
such as Koopmans definition of efficiency is base on the concept of efficient
subset.

2.6 Definition 5
The Russell measure [4], introduced by Fare and Lovell (1978)[9] is defined as

R(X,Y ) = Min{
m�

i=1
θi

m
: (θ1X1, θ2X2, ..., θmXm) ∈ L(Y ), θi ∈ [0, 1]∀i}. (4)

The Russell measure shrinks the input vector all coordinate directions until a
point in the subset of the isoquant is reached.
2.7 Definition 6
Kopp[7] introduces the notion of single-factor efficiency measures as an at-
tempt to understand the individual contribution of each input to inefficiency.
The single-factor efficiency measure of k − th input is given by
Kk(X,Y ) = Min{θk : (X1, ..., θkXk, ..., Xm) ∈ L(Y ), θk ∈ R+}. (5)
Expression (5) gives the contraction in input needed to reach the isoquant.

3. Input-specific contraction model

In this section after some definition, we present input-specific contraction
model which introduced by Gonzalez et al. (2001)[3].

3.1 Definition 7
The smallest contraction to the efficient subset is defined as

C(X,Y ) = Min{
m∑

i=1

(1−θi) : (θ1x1, θ2x2, ..., θmxm) ∈ Eff L(Y ), θi ≤ 1 ∀i}. (6)

Expression (6) determinates the shortest path to the efficient subset.
3.2 Definition 8
The k−th input-specific contraction measures the contraction needed to reach
the isoquant along the k − th axis is defined as
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C(X,Y )k = Max

{
m∑

i=1

(1 − θi) :
(x1, ..., θkxk, ..., xm) ∈ IsoqL(Y ) θi ≤ 1
(θ1x1, ..., θmxm) ∈ EffL(Y ) ∀i

}
. (7)

3.3 Theorem 1
The smallest contraction to the efficient subset is the smallest input-specific
contraction [3]:
C(X,Y ) = Min{C(X,Y )k | k = 1, ..., m }. (8)
3.4 programming model
Gonzalez et al (2001) introduced the below formulation that computes all fea-
sible reductions in order to reach the efficient subset.

Min Mθk +
m∑

i=1,i�=k

θi

s.t
n∑

j=1

λjxij ≤ θixio i = 1, ..., m

n∑
j=1

λjyrj ≥ yro r = 1, ..., s (9)

n∑
j=1

λj = 1

θi ≤ 1 i = 1, ..., m, i �= k
λj ≥ 0 j = 1, ..., n

Where M is a large enough scalar to force the model (9) to identity k − th
input toward the isoquant. After computing θ in Eq. (9), the input-specific
contraction defined in Eq. (8) can be derived as

C(Xi, Yi) =
m∑

i=1

(1 − θi) = (1 − θk) +
m∑

i=1,i�=k

(1 − θi). (10)

4. Contraction input-special on subset efficient using interval inputs
In this section we will extend the work Gonzalez et al. (2001) on interval data
(here, we note to interval input). According to model (9), we have model (11)
for interval inputs:

Min Mθk +
m∑

i=1,i�=k

θi

s.t
n∑

j=1

λj [x
L
ij, x

U
ij] ≤ θi[x

L
io, x

U
io] i = 1, ..., m

n∑
j=1

λjyrj ≥ yro r = 1, ..., s (11)

n∑
j=1

λj = 1

θi ≤ 1 i = 1, ..., m, i �= k
λj ≥ 0 j = 1, ..., n

Where M is a large number, such that it force that θk get possible minimum
value. Model (11) first decrease k− th input and then the other inputs so that
we reach on isoquant. Suppose that θ∗ = (θ∗1, ..., θ

∗
k, ..., θ

∗
m) is optimal solution
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in model (11), then we get contraction input-special with interval input by
C([XL

i , XU
i ], Yi)k:

C([XL
i , XU

i ], Yi)k =
m∑

i=1

(1 − θ∗i ) (12)

The relation (12) also can be written as follows:

C([XL
i , XU

i ], Yi)k = (1 − θ∗k) +
m∑

i=1,i�=k

(1 − θ∗i ). (13)

In formula (13), first factor is the value contraction for arrive to isoquant and
second factor show the values of slack variables in order to reach the efficient
subset.
4.1 Definition 9
The smallest contraction to the efficient subset with interval input is defined as

C([XL, XU ], Y ) = Min{
m∑

i=1

(1−θi) : (θ1[X
L
1 , XU

1 ], θ2[X
L
2 , XU

2 ], ..., θm[XL
m, XU

m]) ∈
Eff L(Y ), θi ≤ 1 ∀i}. (14)

4.2 Definition 10
The smallest contraction to the efficient subset is the smallest input-specific
contraction
C([XL, XU ], Y ) = [C([XL, XU ], Y )L, C([XL, XU ], Y )U ]
C([XL, XU ], Y )L = Min C([XL, XU ], Y )L

k , k = 1, ..., m (15)
C([XL, XU ], Y )U = Max C([XL, XU ], Y )U

k , k = 1, ..., m

Regarding model (11), with interval input, we obtain in below two models

ZL
k = Min Mθk +

m∑
i=1,i�=k

θi

s.t
n∑

j=1,j �=o

λjx
L
ij + λox

U
io ≤ θix

U
io i = 1, ..., m

n∑
j=1

λjyrj ≥ yro r = 1, ..., s (16)

n∑
j=1

λj = 1

θi ≤ 1 i = 1, ..., m, i �= k
λj ≥ 0 j = 1, ..., n

ZU
k = Min Mθk +

m∑
i=1,i�=k

θi

s.t
n∑

j=1,j �=o

λjx
U
ij + λox

L
io ≤ θix

L
io i = 1, ..., m

n∑
j=1

λjyrj ≥ yro r = 1, ..., s (17)
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n∑
j=1

λj = 1

θi ≤ 1 i = 1, ..., m, i �= k
λj ≥ 0 j = 1, ..., n

Then C([XL, XU ], Y )L
k =

m∑
i=1

(1−θi) with θi in model (17) and C([XL, XU ], Y )U
k =

m∑
i=1

(1 − θi) with θi in model (16) are values of contraction input-special for

models (16) and (17), respectively. In order to further explain, consider Far-
rell model (two inputs and one output) accorded to Figures 2 and 3, for data
and A, B, C and D which inputs are intervals. Let DMUc be as a unit under
evaluate.
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Fig. 2. Input of evaluated DMU is best condition
and other DMUs in worst condition
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Fig. 3. Input of evaluated DMU is worst condition
and other DMUs in best condition
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4.3 Theorem 2
Let, (λ∗, θ∗) ∈ Rm+n is a optimal solution (16)then

n∑
j=1,j �=o

λ∗
jx

L
ij + λ∗

ox
U
io = θ∗i x

U
io i = 1, ..., m (18)

Proof: Suppose that λ∗, θ∗ be optimal solution of model (16), such that
n∑

j=1,j �=o

λ∗
jx

L
ij + λ∗

ox
U
io < θ∗i x

U
io i = 1, ..., m . Then, we get

n∑
j=1,j �=o

λ∗
jx

L
ij + λ∗

ox
U
io ≤ θ∗i x

U
io − sio i = 1, ..., m. Where sio > 0 . We set

sio = lix
U
io, such that li > 0 , because x and s are input quantities. Therefore,

we have
n∑

j=1,j �=o

λ∗
jx

L
ij + λ∗

ox
U
io ≤ θ∗i x

U
io − lix

U
io i = 1, ..., m. Thereby

n∑
j=1,j �=o

λ∗
jx

L
ij + λ∗

ox
U
io ≤ θ∼i xU

io i = 1, ..., m. Where θ∼i = θ∗i − li, i = 1, ..., m.

Hence, (λ∼, θ∗) is a solution for model (16), and we will have objective value

Z∼L
k = Mθ∼k +

m∑
i=1,i�=k

θ∼i = M(θ∗k−lk)+
m∑

i=1,i�=k

(θ∗i −li) = Z∗L
k −(Mlk+

m∑
i=1,i�=k

li) <

Z∗L
k

This is a contradict.
4.4 Theorem 3
Let, (λ∗, θ∗) ∈ Rm+n is a optimal solution (17)then

n∑
j=1,j �=o

λ∗
jx

U
ij + λ∗

ox
L
io = θ∗i x

L
io i = 1, ..., m (18)

Proof:The proof is also as Theorem 2.

4.5 Theorem 4
Assume that xij ∈ [xL

ij, x
U
ij] , then according to models (11), (16) and (17) we

have: Z∗L
k ≤ Z∗

k ≤ Z∗U
k .

Proof: Suppose that λ∗, θ∗ be optimal solution of model (11), then
n∑

j=1,j �=o

λ∗
jx

L
ij ≤

n∑
j=1,j �=o

λ∗
jxij ≤ (θ∗i − λ∗

o)xio ≤ (θ∗i − λ∗
o)x

U
io, i = 1, ..., m

It implied that λ∗, θ∗ is a feasible solution for model (16). Therefore we have:
Z∗L

k ≤ Z∗
k (20)

Also suppose that λ∗, θ∗ be optimal solution of model (17), then
n∑

j=1,j �=o

λ∗
jxij ≤

n∑
j=1,j �=o

λ∗
jx

U
ij ≤ (θ∗i − λ∗

o)x
L
io ≤ (θ∗i − λ∗

o)xio, i = 1, ..., m

It implied that λ∗, θ∗ is a feasible solution for model (11). Therefore we have:
Z∗

k ≤ Z∗U
k (21)

Hence from relations (20) and (21) we have: Z∗L
k ≤ Z∗

k ≤ Z∗U
k .

The proof is complete.
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4.6 Theorem 5
Assume that xij ∈ [xL

ij, x
U
ij] , then according to models (11), (16) and (17) we

have:
C([XL

i , XU
i ], Y )L

k ≤ C([XL
i , XU

i ], Y )k ≤≤ C([XL
i , XU

i ], Y )U
k

Proof: The assertion is confirm with respect to models (11), (16), (17) and
the definition (15) and also inequality Z∗L

k ≤ Z∗
k ≤ Z∗U

k , because we have:
first θ∗Lk ≤ θ∗k ≤ θ∗Uk , where θ∗Lk , θ∗k and θ∗Uk are the optimal values of k − th
input toward the isoquant for models (17), (11) and (16), respectively. Second

C([XL
i , XU

i ], Y )L
k = m−

m∑
i=1

θ∗Ui ≤ m+(M−1)θ∗Uk −Z∗U
k ≤ m+(M−1)θ∗k−Z∗

k =

C([XL
i , XU

i ], Y )k ≤ m + (M − 1)θ∗Lk − Z∗L
k = C([XL

i , XU
i ], Y )U

k

5. Numerical Example

In this article, branches of Bank are chosen. There are 18 branches in this
district. Each branch uses 9 inputs to produce 3 outputs. Table 1 shows a list
of results regarding models (15), (16) and (17).

Table1. The results interval input contraction by models (15), (16) and (17)
DMUj 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

θL
j 1 1 0.0972 1 1 1 1 1 1 1 1 1 1 1 1 0.2308 0.1304 1

θU
j 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

In Table 1 we have three branches have the lower bounded of input contrac-
tion less than 1 and the upper bounded 1, meanwhile the other branches have
lower and upper bounded of input contraction is equal 1. Note that, the lower
bounded of input contraction in order to branch 3 arise in 7 − th input index
and branches 16 and 17 in 1 − th input index.

6. Conclusion

In this paper we present eligible benchmarks for inefficient Interval Decision
Making Units (IDMU). In this approach we first compute the k−th contraction
interval data (Here, interval input) with models (16) and (17). In continue we
give minimum contraction of inputs with relation of (15). In this study also we
performed an application of data envelopment analysis to the Iran commercial
banking system, by using interval data and determination of input contraction
as an interval. As it was predictable, these results show that in order to some
of bank branches the least input contraction is not membership to an especial
input.
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