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Abstract. This work presents a study of the flow and heat transfer of an 

incompressible viscous electrically conducting fluid over a continuously moving 

vertical infinite plate with uniform suction and heat flux in the presence of 

radiation taking into account the effects of variable viscosity. It is found that the 

velocity increases as the viscosity of air or the magnetic parameter decreases and 

the thermal boundary layer thickness increases as the radiation parameter 

increases. The skin-friction coefficient is computed and discussed for various 

values of the parameters.  
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1- Introduction  

      Flow and heat transfer in the boundary layer induced by a moving surface in a 

quiescent fluid is important in many engineering applications. For examples, in 

the extrusion of polymer sheet from a dye,  the cooling of an infinite metallic 

plate in a cooling path, glass blowing continuous casting and spinning of fibers. 

      Sakiadis [5] studied the boundary layer flow over a continuous solid surface 

moving with constant velocity in an ambient fluid. The flow is quite different 

from the boundary layer flow over a semi-infinite flat plate due to the entrainment 

of the ambient fluid. Tsou et al. [7] presented a combined analytical and 

experimental study of the flow and temperature fields in the boundary layer on a 

continuous moving surface. Erickson et al. [9] extended Sakiadis problem to 

include blowing or suction at the moving surface. Crane [10] studied the 

boundary layer flow caused by a stretching sheet whose velocity varies linearly 

with the distance from a fixed point on the surface. Gupta and Gupta [15] studied 

the momentum, heat and mass transfer in the boundary layer over a stretching 

sheet with suction or blowing. Soundalgekar and Ramana [17] investigated the 

constant surface case with a power law temperature variation.  

The magnetohydrodynamics of an electrically conducting fluid is 

encountered in many problems in geophysics, astrophysics, engineering 

applications and other industrial areas. Hydromagnetic  free convection flow have 

a greet significance for the applications in the fields of steller and planetary 

magnetospheres, aeronautics. Engineers employ magnetohydrodynamics 

principles in the design of heat exchangers, pumps, in space vehicle propulsion, 

thermal protection, control and re-entry and in creating novel power generating 

systems. However, hydromagnetic flow and heat transfer problems have become 

more important industrially. In many metallurgical processes involve the cooling 

of many  continuous strips or filaments by drawing them through an electrically 

conducting fluid subject to a magnetic field, the rate of cooling can be controlled  



Variable Viscosity Effects                                                                                   801 

and final product of desired characteristics can be achieved. Another important 

application of hydromagnetics to metallurgy lies in the purification of molten 

metals from non-metallic inclusions by the application of a magnetic field. 

Chakrabartia and Gupta [1] investigated hydromagentic flow, heat and mass 

transfer over a stretching sheet. Kumar et al. [6] studied hydromagnetic flow and 

heat transfer on a continuously moving vertical plate. Vajravelu and 

Hadjinicolaou [8] studied the flow and heat transfer characteristic in an 

electrically conducting fluid near an isothermal stretching sheet. Sharma and 

Mathur [14] investigated steady laminar free convection flow of an electrically 

conducting fluid along a porous hot vertical infinite plate in the presence of heat 

source or sink. 

On the other hand, at high temperature the effects of radiation in space 

technology, solar power technology, space vehicle re-entry, nuclear engineering 

applications are very significant. Many processes in industrial areas occur at high 

temperature and the knowledge of radiation heat transfer in the system can 

perhaps lead to a desired product with a desired characteristic. Raptis and 

Massalas [4] studied the radiation effect on the unsteady magnetohydrodynamic 

flow of an electrically conducting viscous fluid past a plate. Chamkha [2] 

investigated thermal radiation and buoyancy effects on hydromagnetic flow over 

an accelerating permeable surface with heat source or sink. Raptis et al.[3] 

discussed the effect of thermal radiation on MHD asymmetric flow of an 

electrically conducting fluid past a semi-infinite plate. 

All the above studies were confined to a fluid with constant viscosity. 

However, it is known that this physical property may change significantly with 

temperature. Hossain and Munir [12] analyzed a two-dimensional mixed 

convection flow of a viscous incompressible fluid of temperature dependent 

viscosity past a vertical plate. Fang [16] studied the influence of fluid property  
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variation on the boundary layers of a stretching surface. Hossain et al.[11] 

discussed the effect of radiation on free convection flow of a fluid with variable 

viscosity from a porous vertical plate.  

The purpose of the present work is to study the effects of radiation and 

variable viscosity on hydromagnetic boundary layer flow along a continuously 

moving vertical plate with uniform suction and heat flux.  

2- Physical model and governing equations  

consider a steady two- dimensional laminar boundary layer flow of an 

incompressible electrically conducting viscous fluid on an infinite plate, issuing 

from a slot and moving vertically with uniform velocity in a fluid and heat is 

supplied from the plate to the fluid at a uniform rate. The x-axis is taken along the 

plate in the upwards direction and y- axis is normal to it. A transverse constant 

magnetic field 0B  is applied, i.e, in the direction of y-axis. The physical model of 

the problem is shown in figure 1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Physical model of the problem 
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The induced magnetic field is assumed to be negligible. It is also assumed 

that the external electric field is zero and the electric field due to polarization of 

charges is negligible. The viscous dissipation and Joule heating are also 

neglected. We further assume that property variation with temperature are limited 

to viscosity and with the density taken into account only in the buoyancy term in 

the momentum equation. Since the motion is two – dimensional and the length of 

the plate is large, therefore, all the physical variables are independent of x. Under 

the above assumptions and Boussinesq approximation the hydromagnetic flow 

relevant to the problem is governed by the following equations  
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      The boundary conditions are  
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From equation (1) we take  

                                                    ,ovv −=                                     (5) 

where vu ,  are the velocities along yx ,  coordinates, respectively. g is the 

acceleration due to gravity, β is the coefficient of thermal expansion, T  is the 

fluid temperature, ∞T is the ambient temperature, ρ  is the density of the fluid, σ  

is the electrical conductivity, ∞ρ is the ambient density, μ is the fluid viscosity, q   
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is the heat flux, κ  is the thermal conductivity, pc is the specific heat at constant 

pressure, rq is the radiative heat flux and 0v  is the normal velocity at the plate .  

By using Rosseland approximation rq takes the form [3] 

  ,
3
4

=
4

*

*

dy
dT

k
σ

qr                                                   (6)                               

where *k is the mean absorption coefficient and *σ is the Stefan-Boltzmann 

constant. The temperature differences within the fluid assumed sufficiently small 

such that 4T  may be expressed as a linear function of the temperature. Expanding 
4T  in a Taylor series about ∞T and neglecting higher order terms, we get  
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By using equations (5), (6) and (7) then equation (3) gives  
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Introducing the following non-dimensional quantities  
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into equations (2) and (8), one gets the following non-dimensional equations 

governing the flow and the energy distribution:  

                              ,0=-+++ ///// MfθGffμfμ r                             (10) 
                           0=+)+1( /// θPθR r     .                                               (11) 

The appropriate boundary conditions are  

                                ,1-=,1=:0= /θfη                               
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where the prime denotes the differentiation with respect to η and  
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R   is the radiation 

parameter.                                              

      The fluid viscosity )(θμ  was assumed to obey the Reynolds model [13]  

    αθe
μ
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∞

    ,                                                                  (13) 

where α , is parameter depending on the nature of the fluid. 

Using equation (13) in equation (10) we obtain  
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αθ                         (14) 

3. Method of solution  

(i) Case of constant viscosity : 

For 0=α , from equation (14) we have  

                                   .0=+-+ /// θGMfff r                                               (15) 

Solving equation (11) and (14) with the boundary conditions (12), we get  
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(ii)  Variable viscosity case: 

On taking into account the solution for temperature, we solved 

numerically the equation (14) under the boundary conditions (12) using the fourth 

order Runge-Kutta method algorithm with systematic guessing )0(/f by the 

shooting technique until the boundary condition )(ηf at infinity decay 

exponentially to zero. If the boundary condition at infinity is not satisfied then the 

numerical routine uses the Newton-Raphson method to calculate corrections to 

the estimate value of )0(/f . This process is repeated iteratively until convergence 

is achieved to a specified accuracy, 10-5.  

The physical quantity of most interest in such problem is the skin- friction 

coefficient which is defined by  
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4. Results and discussion  

In order to validate our results, we have compared our numerical results  

with oα =  for )0(/f  with those of analytical results. The results are found to be 

in a good agreement as given in table 1. For constant viscosity, i.e. oα = , the 

numerical solutions for the velocity distribution )(ηf  are in agreement with the 

analytical solutions as shown in figures 2-4 for various values of M , rG  and R , 

respectively. For the purpose of discussing the effect of various parameters on the 

flow profiles and the temperature distributions within the boundary layer. 

Numerical calculations have been carried out for various values of rGMα ,,  and 

 



Variable Viscosity Effects                                                                                   807 

 

R  with fixed values of rP . The value of rP  is taken to be 0.733 for air. The effect 

of α  on the dimensionless velocity f  illustrated in figure 5 with 2.0,2 == RM  

and .5=rG  

 

                     Table.1. comparison of analytical and numerical values of  )0(/f  

with 733.0=rP  

  Numerical  Analytical rG R M 
19.9371 
7.6273 
4.8723 

19.9385 
7.6274 
4.8732 

5 
5 
5 

0.5 
0.5 
0.5 

0 
1 
2 

3.4309 
4.2239 
7.6264 

3.4309 
4.2239 
7.6274 

5 
5 
5 

0 
0.1 
0.5 

1 
1 
1 

7.6264 
13.1731 
16.8709 

7.6274 
13.1747 
16.8728 

5 
8 
10 

0.5 
0.5 
0.5 

1 
1 
1 

 
From this figure, one sees that the velocity f  increases as the viscosity of air 

decreases. The fluid velocity increased and reached its maximum value at very 

short distance from the plate and then decreased to zero. The velocity f  at any 

vertical plane near the plate decreases as the magnetic parameter M   increases as 

shown in figure 6. It is observed that the velocity increased to its maximum value 

near the plate and then decreased to zero. Figures 7 and 8 show that the velocity 

f  and the temperature θ  increases as the radiation parameter R  increases. As 

the radiation parameter R  increase the maximum value of the velocity increases. 

Also it is noticed that a decreases in the fluid temperature with maximum  value at 

the plate and minimum at a distance away from the plate. The Grashof number 

effect on the velocity f  is shown in figure 9. It is shown that the velocity f  

 



808                                                                                     Mostafa A.A. Mahmoud 

 

increases as the Grashof number increases. From this figure, we see that the 

velocity increased to its maximum value near the plate and then decreased to zero. 

The maximum value increased with the increasing rG . The variation of the skin-

friction coefficient )0(/f for various values of α , M ,R  and rG  with 

733.0=rP  is shown in table 2. It can be seen from this table that the skin-friction 

coefficient increases as the viscosity parameter, the radiation parameter or the 

Grashof number increases. Increasing of the magnetic parameter leads to a 

decrease in the skin-friction.   
 

         Table.2. The values of  )0(/f for different  with 733.0=rP  
  

)0(/f rG R M α 
7.6264 
5.3720 
3.7820 

5 
5 
5 

0.5 
0.5 
0.5 

1 
1 
1 

0 
-0.2 
-0.4 

13.2331 
5.3720 
3.4921 

5 
5 
5 

0.5 
0.5 
0.5 

0 
1 
2 

-0.2 
-0.2 
-0.2 

2.6836 
3.2356 
5.3720 

5 
5 
5 

0 
0.1 
0.5 

1 
1 
1 

-0.2 
-0.2 
-0.2 

5.3720 
9.3035 

11.9246 

5 
8 
10 

0.5 
0.5 
0.5 

1 
1 
1 

-0.2 
-0.2 
-0.2 

 
 

5-Conclusion 

     In this work, the problem of boundary layer flow of a steady viscous, 

incompressible electrically conducting fluid with variable viscosity over a 

continuously moving vertical porous plate in the presence of magnetic field and 

radiation has been investigated. The major results from this study can be 

summarized : 
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1. the velocity increases as the viscosity parameter increases, while it  

      decreases as the magnetic parameter increases.  

2. the maximum value of the velocity increases as the radiation  parameter  

or the Grashof number increases.  

3. the thermal boundary layer thickness decreases as the radiation parameter 

increases. 

4. the skin-friction coefficient increases as the viscosity parameter, the 

radiation parameter or the Grashof number increases, while it decreases as 

the magnetic parameter increases. 
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