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Abstract
In this paper a fourth-order numerical scheme is developed and im-
plemented for the solution of non-homogeneous heat equation ut =
uxx + q(x, t) with integral boundary conditions. The results obtained
show that the numerical method based on the proposed technique is
fourth-order accurate as well as L-acceptable. Also the efficiency and
the accuracy of the new scheme is in good agreement with the exact ones
as compared to the alternative techniques existing in the literature.
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1 Introduction

In this paper we have considered the non-homogeneous heat equation in one-
dimension with the non-local boundary conditions. Much attention has been
paid in the literature for the development, analysis and implementation of
accurate methods for the numerical solution of this typical problem.
Consider the heat equation

∂u

∂t
=
∂2u

∂x2
+ q(x, t), 0 < x < 1, 0 < t ≤ T (1)
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subject to the given initial condition

u(x, 0) = f(x), 0 ≤ x ≤ 1 (2)

and the non-local boundary conditions

u(0, t) =
∫ 1

0
φ(x, t)u(x, t)dx+ g1(t), 0 < t ≤ T (3)

u(1, t) =
∫ 1

0
ψ(x, t)u(x, t)dx+ g2(t), 0 < t ≤ T (4)

where f, g1, g2, φ, ψ and q are known functions and are assumed to be suffi-
ciently smooth to produce a smooth classical solution of u. T is given positive
constant. A number of numerical procedures are suggested in the literature to
address the problem: see, for instant [2, 3, 5, 6, 9, 12].

Inspiring from great accuracy achieved in [11] the authors aim to attempt
this problem. In this paper the method of lines, semi discretization approach,
will be used to transform the model partial differential equation (PDE) into
a system of first-order, linear, ordinary differential equations (ODEs), the so-
lution of which satisfies a recurrence relation involving matrix exponential
terms. A fourth-order rational approximation will be used to approximate ex-
ponential functions which will lead to an L-acceptable algorithm which may
be parallelized through the partial fraction splitting technique.

2 DISCRETIZATION AND TREATMENT OF

THE NON-LOCAL BOUNDARY CONDI-

TIONS

Choosing a positive odd integer N > 6 and dividing the interval [0, 1] into N+1
subintervals each of width h, so that h = 1/(N + 1), and the time variable t
into time steps each of length l, gives a rectangular mesh of points with co-
ordinates (xm, tn) = (mh, nl) where (m = 0, 1, 2, ..., N + 1 and n = 0, 1, 2, ...)
covering the region R = [0 < x < 1] × [t > 0] and its boundary ∂R consisting
of lines x = 0, x = 1 and t = 0.

Assuming that u(x, t) is six times continuously differentiable with respect to
variable x and that these derivatives are uniformly bounded, the space deriva-
tive in (1) may be approximated to the fourth-order accuracy at some general
point (x, t) of the mesh by using the five point central difference approximation

∂2u(x, t)

∂x2
=

1

12h2
{−u(x− 2h, t) + 16u(x− h, t) − 30u(x, t) + 16u(x+ h, t)

− u(x+ 2h, t)} +
h4

90

∂6u(x, t)

∂x6
+O(h5) as h→ 0 (5)



Fourth-order method for non-homogeneous heat equation 1813

also used by [1, 5, 11].
It is worth noting that the equation (5) is valid only for (x, t) = (xm, tn)

with m = 2, 3, ..., N − 1. To attain the same accuracy at the points (xi, tn)
for i = 1 and i = N , special formulae developed by [11] are used, which

approximate ∂2u(x,t)
∂x2 not only to fourth-order but also with dominant error

term h4

90
∂6u(x,t)
∂x6 for x = x1, xN and t = tn. Such approximations are

∂2u(x, t)

∂x2
=

1

12h2
{9u(x− h, t) − 9u(x, t) − 19u(x+ h, t) + 34u(x+ 2h, t)

− 21u(x+ 3h, t) + 7u(x+ 4h, t) − u(x+ 5h, t)} +
h4

90

∂6u(x, t)

∂x6

+ O(h5) as h→ 0 (6)

and

∂2u(x, t)

∂x2
=

1

12h2
{−u(x− 5h, t) + 7u(x− 4h, t) − 21u(x− 3h, t) + 34u(x− 2h, t)

− 19u(x− h, t) − 9u(x, t) + 9u(x+ h, t)} +
h4

90

∂6u(x, t)

∂x6

+ O(h5) as h→ 0 (7)

at the mesh points (x1, tn) and (xN , tn) respectively. Applying (1) with (5),
(6) and (7) to all the interior mesh points of the grid at time level t = tn
produces a system of N linear equations in N + 2 unknowns U0, U1, ..., UN+1.
The integrals in (3) and (4) are approximated by using Simpson’s 1

3
rule as

used by [6, 7, 8]. Here

u(0, t) =
h

3
{φ(0, t)u(0, t) + 4

N+1
2∑
i=1

φ((2i− 1)h, t)u((2i− 1)h, t)

+ 2

N+1
2

−1∑
i=1

φ(2ih, t)u(2ih, t) + u((N + 1)h, t)}

+ g1(t) +O(h4) (8)

and

u(1, t) =
h

3
{ψ(0, t)u(0, t) + 4

N+1
2∑
i=1

ψ((2i− 1)h, t)u((2i− 1)h, t)

+ 2

N+1
2

−1∑
i=1

ψ(2ih, t)u(2ih, t) + u((N + 1)h, t)}

+ g2(t) +O(h4) (9)
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Solving (8) and (9) for U0 and UN+1 and substituting their values in the above
system we have a system of N linear ordinary differential equations which can
be written in vector matrix form as

dU(t)

dt
= AU(t) + v(t), t > 0 (10)

with initial distribution
U(0) = f (11)

in which U(t) = [U1(t), U2(t), ..., UN(t)]T and f = [f(x1), f(x2), ..., f(xN)]T ,
where T denoting the transpose and matrix A of order N ×N which is given
by

A =
1

12h2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 α2 α3 α4 α5 α6 ... αN−1 αN
β1 β2 β3 β4 β5 β6 ... βN−1 βN
−1 16 −30 16 −1

−1 16 −30 16 −1
−1 16 −30 16 −1

. . .
. . .

. . .
. . .

. . .

−1 16 −30 16 −1
γ1 γ2 γ3 γ4 γ5 γ6 ... γN−1 γN
δ1 δ2 δ3 δ4 δ5 δ6 ... δN−1 δN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where
α1 = 9m1 − 9, α2 = 9m2 − 19, α3 = 9m3 + 34, α4 = 9m4 − 21,
α5 = 9m5 + 7, α6 = 9m6 − 1, and αi = 9mi for i ≥ 7
β1 = −m1 + 16, β2 = −m2 − 30, β3 = −m3 + 16, β4 = −m4 − 1, and
βi = −mi for i ≥ 5
γN−3 = −nN−3 − 1, γN−2 = −nN−2 + 16, γN−1 = −nN−1 − 30,
γN = −nN + 16, γi = −2ni for 1 ≤ i ≤ N − 4
δN−5 = 9nN−5 − 1, δN−4 = 9nN−4 + 7, δN−3 = 9nN−3 − 21,
δN−2 = 9nN−2 + 34, δN−1 = 9nN−1 − 19, δN = 9nN − 9,
and δi = 9ni for 1 ≤ i ≤ N − 6
in which

mi =

⎧⎨
⎩

4h
3
(c4φi−c2ψi)

c1c4−c2c3 for i=1,3,5,...N
2h

3
(c4φi−c2ψi)

c1c4−c2c3 for i=2,4,6,...N-1
and

ni =

⎧⎨
⎩

4h
3
(c3φi−c1ψi)

c2c3−c1c4 for i=1,3,5,...N
2h

3
(c3φi−c1ψi)

c2c3−c1c4 for i=2,4,6,...N-1

Here c1 = 1 − h
3
φ0, c2 = −h

3
φN+1, c3 = −h

3
ψ0 and c4 = 1 − h

3
ψN+1, also φi =

φ(ih, t) and ψi = ψ(ih, t). The column vector v(t) contains the contribution
from the functions q(x, t), g1(t) and g2(t) and is given as

v(t) = [
9l1

12h2
+ q1,

−l1
12h2

+ q2, q3, ..., qN−2,
−l2
12h2

+ qN−1,
9l2

12h2
+ qN ]T (12)
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where l1 = c4g1(t)−c2g2(t)
c1c4−c2c3 and l2 = c1g2(t)−c3g1(t)

c1c4−c2c3
The solution of the system (10) subject to (11) is given by

U(t) = exp(tA)f +
∫ t

0
exp[(t− s)A]v(s)ds (13)

[11] which satisfies the recurrence relation

U(t+ l) = exp(lA)U(t) +
∫ t+l

t
exp[(t+ l − s)A]v(s)ds, t = 0, l, 2l, ... (14)

. Eigenvalues of the matrix A are calculated using MATLAB 5.3 for N =
9, 19, 39, 79 and it is observed that they are distinct negative real ones or
complex with negative real parts.

To approximate the matrix exponential function in (14) following [11] we
use a rational approximation consisting of three parameters a1, a2, a3 and a
real scalar θ given by

E4(θ) =
1 + (1 − a1)θ + (1

2
− a1 + a2)θ

2 + (1
6
− a1

2
+ a2 − a3)θ

3

1 − a1θ + a2θ2 − a3θ3 + (− 1
24

+ a1
6
− a2

2
+ a3)θ4

=
p(θ)

q(θ)
(15)

with error constant C = 1
30

− 1
8
a1 + 1

3
a2 − 1

2
a3. Stability of the method is

guaranteed by [11].
So we have

exp(lA) = G−1(I+(1−a1)lA+(
1

2
−a1+a2)l

2A2+(
1

6
− a1

a2

+a2−a3)l
3A3) (16)

where

G = I − a1lA+ a2l
2A2 − a3l

3A3 + (− 1

24
+
a1

6
− a2

2
+ a3)l

4A4 (17)

The quadrature term in (14) is approximated by

∫ t+l

t
exp[(t+ l− s)A]v(s)ds = W1v(s1) +W2v(s2) +W3v(s3) +W4v(s4) (18)

where s1 = t, s2 = t+ l/3, s3 = t+ 2l/3, s4 = t+ l and W1,W2,W3 and W4 are
matrices given by [11] and are mentioned here for convenience.

W1 =
l

24
{3I− (19−78a1 +216a2−324a3)lA+(3−8a1 +12a2)l

2A2}G−1 (19)

W2 =
3l

16
{2I+(16−56a1 +144a2−216a3)lA+(1−4a1 +12a2−24a3)l

2A2}G−1

(20)

W3 =
3l

8
{I−(7−26a1+72a2−108a3)lA−(1−4a1+12a2−24a3)l

2A2}G−1 (21)
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W4 =
l

48
{6I + (44 − 168a1 + 432a2 − 648a3)lA + (11 − 44a1 + 132a2

− 216a3)l
2A2 + (2 − 8a1 + 24a2 − 48a3)l

3A3}G−1 (22)

Hence

U(t+ l) = exp(lA)U(t) +W1v(t)+W2v(t+ l/3) +W3v(t+ 2l/3) +W4v(t+ l)
(23)

3 NUMERICAL EXPERIMENTS

In this section the numerical method described in this paper will be applied to
four problems from the literature and results obtained will be compared with
exact solutions as well as with the results existing in the literature. Following
[11] we have chosen here a1 = 64/25, a2 = 7/3 and a3 = 547/600 which fulfil
all the requirements.
EXAMPLE (1):- Consider the problem (1)-(4) with
f(x) = x2, 0 < x < 1,
g1(t) = −1

4(t+1)2
, 0 < t < 1,

g2(t) = 3
4(t+1)2

, 0 < t < 1,

φ(x, t) = x, 0 < x < 1,
ψ(x, t) = x, 0 < x < 1,

q(x, t) = −2(x2+t+1)
(t+1)3

, 0 < t ≤ 1, 0 < x < 1

which has theoretical solution u(x, t) = ( x
t+1

)2 [7].
The problem is solved using the scheme developed in this paper for h =

l = 0.05, 0.025, 0.01, 0.005, 0.0025, 0.001 at x = 0.6 and t = 1. The relative
errors obtained by the new scheme are given in Table 1 and the results are
compared with different schemes, BTCS implicit scheme, Crandall method,
FTCS scheme and Dufort-Frankel scheme given by [7]. From the table we can
see that the results of the new scheme are far better than those of the schemes
given in [7].
EXAMPLE (2):-Now consider the problem (1)-(4) with
f(x) = exp(−x), 0 < x < 1,
φ(x, t) = ax, 0 < x < 1,
ψ(x, t) = bcos(x), 0 < x < 1,
g1(t) = 0, 0 < t < 1,
g2(t) = 0, 0 < t < 1,
where a = e/(e− 2) and b = 2/(sin(1) − cos(1) + e)
and q(x, t) = −exp[−(x+ sint)](1 + cost), 0 < t ≤ 1, 0 < x < 1
which has theoretical solution u(x, t) = exp(−(x+ sint))

For Example (2) results are given in Table 2 and Table 3. In Table 2
the results are computed for h = l = 0.05, 0.025, 0.01, 0.005, 0.0025, 0.001 at
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x = 0.6 and t = 0.1. The relative errors developed in the scheme are compared
with different schemes, BTCS implicit scheme, Crandall method, FTCS scheme
and Dufort-Frankel scheme given by [7]. From the table it is clear that the
results are in good agreement as compared with the exact ones as well as better
than other schemes. Moreover the new scheme is fourth-order accurate except
for very small values of h and l when accumulating error is high.

The Example (2) is also solved for h = 0.01 = l for different values of
t at x = 0.25 and the results are tabulated in Table 3. Table 3 shows that
the scheme developed in this paper gives superior results to those computed
by using the Crank-Nicolson finite-difference method [12], the implicit finite-
difference technique and the parallel techniques [6]. The parallel technique
developed in [6] is second-order accurate while the parallel technique developed
in this paper is fourth-order accurate.
EXAMPLE (3):- Once again Consider the problem (1)-(4) with
f(x) = sin(πx) + cos(πx), 0 < x < 1,
φ(x, t) = 2sin(πx), 0 < x < 1,
ψ(x, t) = −2cos(πx), 0 < x < 1,
g1(t) = 0, 0 < t < 1,
g2(t) = 0, 0 < t < 1,
and q(x, t) = (π2 − 1)exp(−t){sin(πx) + cos(πx)}, 0 < t ≤ 1, 0 < x < 1
which has theoretical solution
u(x, t) = exp(−t){sin(πx) + cos(πx)} [6].

In this problem the results are computed for h = l = 0.01 for different
values of t at x = 0.25 and the results are presented in Table 4. Table 4
shows that the scheme developed in this paper gives superior results to other
schemes namely, the Crank-Nicolson finite-difference method [12], the implicit
finite-difference technique and the parallel techniques [6] .
EXAMPLE (4):- Consider the problem (1)-(4) with
f(x) = x(x− 1) + δ/6(1 + δ), 0 < x < 1,
φ(x, t) = −δ, 0 < x < 1,
ψ(x, t) = −δ, 0 < x < 1,
g1(t) = 0, 0 < t < 1,
g2(t) = 0, 0 < t < 1,
which has theoretical solution
u(x, t) = [x(x− 1) + δ/6(1 + δ)]exp(−t) where δ = 0.0144 [4, 9]

In Example (4) results computed are given in Table 5 and Table 6. In Table
5 results are calculated for h = 0.01 = l at x = 1 and for different values of t.
From the table it is clear that the analytical solution calculated by using the
scheme developed in this paper is good agreement with the exact ones. Also
the solution converges towards exact solution as t increases.

In Table 6 results are given for t = 1 with h = l = 0.1, 0.05, 0.025, 0.0125
and 0.00625 at x = 0.5 and x = 1. It is clear from the table that results
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Table 1: Relative errors at various spatial lengths at t = 1 for Example (1)

Spatial length BTCS Crandall FTCS Dufort-Frankel New scheme
h=0.0500 7.3 × 10−02 3.8 × 10−03 7.5 × 10−02 7.8 × 10−02 2.6 × 10−06

h=0.0250 1.8 × 10−02 2.1 × 10−04 1.9 × 10−02 1.9 × 10−02 2.1 × 10−07

h=0.0100 4.4 × 10−03 1.2 × 10−05 4.0 × 10−03 3.9 × 10−03 6.1 × 10−09

h=0.0050 1.2 × 10−03 7.1 × 10−07 1.0 × 10−03 1.0 × 10−03 3.5 × 10−10

h=0.0025 3.0 × 10−04 4.3 × 10−08 2.5 × 10−04 2.4 × 10−04 8.0 × 10−11

h=0.0010 7.5 × 10−05 2.5 × 10−09 6.1 × 10−05 6.0 × 10−05 1.1 × 10−11

Table 2: Relative errors at various spatial lengths at t = 0.1 for Example (2)

Spatial length BTCS Crandall FTCS Dufort-Frankel New scheme
h=0.0500 6.3 × 10−02 3.9 × 10−03 6.4 × 10−02 6.8 × 10−02 3.0 × 10−07

h=0.0250 1.5 × 10−02 2.4 × 10−04 1.6 × 10−02 1.7 × 10−02 1.9 × 10−08

h=0.0100 4.0 × 10−03 1.5 × 10−05 4.1 × 10−03 4.1 × 10−03 5.0 × 10−10

h=0.0050 1.0 × 10−03 1.0 × 10−06 1.0 × 10−03 1.0 × 10−03 7.9 × 10−12

h=0.0025 2.4 × 10−04 6.4 × 10−08 2.5 × 10−04 2.6 × 10−04 7.0 × 10−11

h=0.0010 6.1 × 10−05 4.0 × 10−09 4.0 × 10−05 3.9 × 10−05 1.3 × 10−10

Table 3: Results for u at different values of t for Example (2)

t Exact u Error
Crank-Nicolson The implicit The parallel New sheme

0.1 .7048055 6.0 × 10−05 5.2 × 10−05 3.8 × 10−06 5.3 × 10−10

0.2 .6384772 5.2 × 10−05 4.1 × 10−05 3.7 × 10−06 9.7 × 10−10

0.3 .5795403 9.7 × 10−05 7.1 × 10−05 4.6 × 10−06 1.4 × 10−09

0.4 .5275993 8.0 × 10−05 6.5 × 10−05 5.5 × 10−06 1.8 × 10−09

0.5 .4821859 1.2 × 10−05 8.9 × 10−05 2.3 × 10−06 2.3 × 10−09

0.6 .4427977 1.1 × 10−05 9.8 × 10−05 1.0 × 10−06 2.7 × 10−09

0.7 .4089274 2.5 × 10−05 1.4 × 10−05 1.1 × 10−06 3.2 × 10−09

0.8 .3800867 3.8 × 10−05 2.6 × 10−05 1.0 × 10−06 3.7 × 10−09

0.9 .3558213 5.8 × 10−05 4.4 × 10−05 2.1 × 10−06 4.3 × 10−09

1.0 .3357223 7.1 × 10−05 6.4 × 10−05 1.9 × 10−06 4.9 × 10−09
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for x = 1 are far better than those at x = 0.5 also the method is third-order
accurate. CPU time taken for the new scheme developed in this paper is also
given in the table which shows that the new scheme is very fast.

This problem is also solved by [2] with φ(x, t) = 12
13

and ψ(x, t) = 12
13

. It is
noted that the increase in the value of δ causes more accuracy.

4 CONCLUSION

It is observed that the results obtained using new scheme are highly accurate
as compared to those of other schemes and the method developed is fourth-
order accurate in space and time as well as L-acceptable. This technique can
be coded easily on serial or parallel computers.

It is worth mentioning that the method using real arithmetic and multipro-
cessor architecture will save CPU time remarkably, rather than the complex
arithmetic based methods.
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0.050000 1.61 × 10−09 1.07 × 10−08 0.0930
0.025000 6.74 × 10−11 9.44 × 10−10 0.3590
0.012500 2.28 × 10−12 7.16 × 10−11 1.6410
0.006250 5.06 × 10−14 4.38 × 10−12 10.078
0.003125 3.28 × 10−15 9.01 × 10−13 96.625
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