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Abstract

In this study, Variational Iteration Method (VIM) and Homotopy
Perturbation Method (HPM) are employed to approximate solutions
of Ppainlevé equation I, with it’s initial conditions. VIM based on La-
grangian multipliers and HPM based on an embedding parameter. Both
of these methods have been introduced by He[11-17] to solve approxi-
mately differential equations. In this paper we construct approximate
polynomials to find approximate solutions of Painlevé equation I. Nu-
merical comparsions are made between VIM and HPM and maple nu-
merical results.
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1 Introduction

The Painlevé equations and their solutions arise in parts of pure and applied
mathematics and theoretical physics. Painlevé considered wide class of second
order equations and classified them to the nature of singularities.Painlevé and
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his coworkers found essentially six different equations within the class consid-
ered whose solutions are single valued as functions of complex independent
variables, except possibly at the fixed singularities of the coefficients. These
are known as Painlevé transcendents and have a great variety of interesting
properties and applications. Painlevé equations have been investigated by
number of researchers using of several techniques. In this work we are going
to study Painlevé equation I which is well known as

u′′ = 6u2 + x, (1.1)

with the initial conditions

u(0) = 0, u′(0) = 1, (1.2)

by using of Variational Iteration Method (VIM) and Homotopy Perturbation
Method (HPM). VIM and HPM have been introduced by He [7-18]. These
methods can be applied successfully to various types of ordinary and partial
differential equations. He [11-15] developed VIM for solving linear and nonlin-
ear problems, which arise in different branches of pure and applied sciences.
Also, He [8-10,17] introduced HPM, which is developed by combinig the stan-
dard homotopy and perturbation method. In these methods the solution is
given in an infinite series usually convergent to an accurate solution. We ap-
ply these methods to equation (1.1) which has singularities according to initial
conditions.

2 Variational Iteration Method (VIM)

To explain the basic idea of variational iteration method, consider the
following nonlinear differential equation

L(u) + N(u) = g(x), (2.1)

where L is a linear operator, N is a nonlinear operator, and g(x) is an inhomo-
geneous term. According to the variational iteration method, we can construct
a correction functional as follows

un+1(x) = un(x) +

∫ x

0

λ(ξ) [Lun(ξ) + Nũn(ξ) − g(ξ)] dξ, (2.2)

where λ(ξ) is a general Lagrangian multiplier which can be identified opti-
mally via the variational iteration method. The subscripts n denote the nth
approximation,ũ is considered as a restricted variation,i.e. δũn = 0. (2.2) is
called the correct functional. Employing the restricted variation in equation



Painlevé equation 1863

(2.2) makes it easy to compute the Lagrange multiplier. The principles of vari-
ational iteration method and its applicability for various kinds of differential
equations are given in [2,3,4,11]. Under reasonable choice of u0, the fixed point
of the correction functional (2.2) is considered as an approximate solution of
(2.1). The solutions of the linear equations can be obtained by only a single
iteration due to the exact identification of the Lagrangian multiplier. The suc-
cessive approximation un+1 of the solution u will be readily obtained upon the
determined Lagrange multiplier and any selective function u0, consequently,
the solution is given by u = lim

n→∞
un.

3 Homotopy Perturbation Method (HPM)

To illustrate the homotopy perturbation method, we consider a general
equation of the type

A(u) − f(r) = 0, r ∈ Ω (3.1)

with the boundary conditions

B(u,
∂u

∂n
) = 0, r ∈ Γ (3.2)

where A is a general differential operator, B a boundary operator, Γ the bound-
ary of the domain Ω and f(r) is a known analytical function. Generally speak-
ing,the operator A can be divided into a linear part L and a nonlinear part N .
Now equation (3.1) can be rewritten as:

L(u) + N(u) − f(r) = 0. (3.3)

By the homotopy perturbation method, we construct a homotopy as v(r, p) :
Ω × [0, 1] → R which satisfies

H(v, p) = (1 − p) [ L(v) − L(u0) ] + p [ A(v) − f(r) ] = 0, (3.4)

where p ∈ [0, 1] is an embedding parameter and u0 is an initial approximation
of equation (3.1) which satisfies the boundary conditions. Considering equation
(3.4) we will have

H(v, 0) = L(v) − L(u0) = 0, (3.5)

H(v, 1) = A(v) − f(r) = 0. (3.6)

The changing process of p from zero to unity is just that of v(r, p) from u0(r)
to u(r). In topology this is called deformation and L(v)−L(u0) and A(v)−f(r)
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are called homotopy.According to the homotopy perturbation theory, we can
first use the embedding parameter p as a small parameter and assume that
vthe solution of equation (3.4) can be written as a power series in p :

v = v0 + pv1 + p2v2 + · · · (3.7)

setting p = 1 one have the approximation solution of equation (3.1) as the
following

u = lim
p→1

v = v0 + v1 + v2 + · · · (3.8)

The (3.8) is convergent for most cases. However, the convergent rate deponds
on the nonlinear operator A(v).

4 VIM for Painlevé Equation

Using the VIM for equation (1.1), we have the functional

un+1(x) = un(x) +

∫ x

0

λ(ξ) [
d2

dξ2
un(ξ) − 6ũ2

n(ξ) − ξ ]dξ, (4.1)

where ũn is consider as restricted variation,i.e.δũn = 0. We find the optimal
value of λ(ξ) as follows

δun+1(x) = δun(x) + δ

∫ x

0

λ(ξ) [
d2

dξ2
un(ξ) − 6ũ2

n(ξ) − ξ ]dξ = 0, (4.2)

or

δun+1(x) = δun(x) + δ

∫ x

0

λ(ξ) [
d2

dξ2
un(ξ) − ξ ]dξ = 0, (4.3)

which yields

δun+1(x) = δun(x) + δλ(ξ)u′
n(ξ) |ξ=x −δλ′(ξ)un(ξ) |ξ=x

+ δ

∫ x

0

λ′′(ξ)un(ξ)dξ + δ

∫ x

0

λ(ξ)ξdξ = 0,

(4.4)

by the stationary conditions we find

1 − λ′(ξ) = 0 |ξ=x (4.5)

λ(ξ) = 0 |ξ=x (4.6)
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λ′′(ξ) = 0 |ξ=x, (4.7)

so the optimal value for λ(ξ) is

λ(ξ) = ξ − x. (4.8)

Applying λ(ξ) into functional (4.1), we can find an iteration formula as

un+1(x) = un(x) +

∫ x

0

(ξ − x) [
d2

dξ2
un(ξ) − 6ũ2

n(ξ) − ξ ]dξ. (4.9)

Choosing u0(x) = x+ 1
6
x3 we find approximate solutions for the problem (1.1)

- (1.2) in the following forms:

u1 = x + 1
6
x3 + 1

2
x4 + 1

15
x6 + 1

336
x8

u2 = x + 1
6
x3 + 1

2
x4 + 1

15
x6 + 1

7
x7 + 1

336
x8 + 1

40
x9 + 1

60
x10 + 71

46200
x11

+ 1
330

x12 + 1
26208

x13 + 187
764400

x14 + 1
100800

x16 + 1
5757696

x18

u3 = x + 1
6
x3 + 1

2
x4 + 1

15
x6 + 1

7
x7 + 1

336
x8 + 1

40
x9 + 1

28
x10 + 71

46200
x11

+ 23
3080

x12 + 893
131040

x13 + 5219
8408400

x14 + 1543
970200

x15 + 960077
1009008000

x16

+ 91061
571771200

x17 + 15034573
61751289600

x18 + 2651251
28756728000

x19 + 60943
2130128000

x20

+ 17671403
720431712000

x21 + 214967
38846808000

x22 + 36866671
11391826446000

x23 + 1429522453
1215128154240000

x24

+ 6673
26013487500

x25 + 119120971
735869534400000

x26 + 1835681
140484183840000

x27

+ 37104619
2574691951104000

x28 + 3611683
8449863502080000

x29 + 247344709
285182893195200000

x30

+ 1
12007195200

x31 + 127657
3573341291520000

x32 + 1
13278997315584

x33

+ 1187
1210325276160000

x34 + 1
60939454466400

x36 + 1
7768399149858816

x38.

The desired solution is u = lim un when n → ∞. Some values for u3(x) are
obtained in table (1). From this table a comparsion between our solution and
Maple numerical results can be made.
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x VIM Maple results
0.1 0.1002167477 0.1002167980
0.2 0.2021394527 0.2021395810
0.3 0.3086307490 0.3086309826
0.4 0.4239862788 0.4239865878
0.5 0.5543399110 0.5543405192
0.7 0.8992296944 0.8992504369
0.9 1.481778951 1.4825252525
1.0 1.959421042 1.9631292204
1.2 3.815497429 3.8908998547
1.4 9.212665846 10.726462766
1.5 15.87244591 23.751855594
1.6 29.40300724 90.421617620
1.7 58.27134634 37524.936553

Table 1: Comparsion between VIM and Maple results

The Painlevé equation (1.1) has a singularity almost at x = 1.7051622
according to initial conditions (1.2), so our approximate polynomial has not
desired accuracy in points close to singularity. In the next section we construct
an other polynomial to approximate solutions of equation (1.1) by HPM.

5 HPM for Painlevé Equation

In this section we apply the homotopy perturbation method for finding an
approximate solution of painlevé equation I. Consider the general form of the
equation

F (u) = g(x), (5.1)

where F is a nonlinear operator, and expand it into the following equation

L(u) + N(u) = g(x), (5.2)

where the linear term is represented by L(u) and L is a linear differential
operator and easily invertible. The nonlinear term is represented by N(u).
L−1 is defined as n-fold integration for

L =
dn

dxn
. (5.3)

As an example for L = d2

dx2 , we will have L−1 =
∫ x

0

∫ x

0
[·]dxdx and

(L−1L)(u) = u − u(0) − xu′(0). (5.4)
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From (5.2) we have

L(u) = g(x) − N(u), (5.5)

L−1(L(u)) = L−1g(x) − L−1N(u), (5.6)

and in this case, one can obtain u as follows

u = u(0) + xu′(0) + L−1g(x) − L−1N(u), (5.7)

applying this result for the equation (1.1), we obtain

u = u(0) + xu′(0) +
1

6
x3 + 6

∫ x

0

∫ x

0

u2dxdx, (5.8)

by the initial conditions (1.2), we have

u = x +
x3

6
+ 6

∫ x

0

∫ x

0

u2dxdx. (5.9)

According to the homotopy perturbation method, we construct the following
homotopy. Using equation (3.4) we find

H(u, p) = u − x − x3

6
− 6p

∫ x

0

∫ x

0

u2dxdx = 0. (5.10)

Inserting
∑∞

i=0 piui instead u in (5.9) and comparing the coefficients of the
same powers of p, we obtain

p0 : u0 = x + 1
6
x3

p1 : u1 = 1
2
x4 + 1

15
x6 + 1

336
x8

p2 : u2 = 1
7
x7 + 1

40
x9 + 71

46200
x11 + 1

26208
x13

p3 : u3 = 1
28

x10 + 23
3080

x12 + 5219
8408400

x14 + 3551
144144000

x16 + 95
224550144

x18

p4 : u4 = 3
364

x13 + 131
64680

x15 + 19867
95295200

x17 + 163469
14378364000

x19 + 163451
491203440000

x21

+ 145806371
39501513648000000

x23

p5 : u5 = 37
20384

x16 + 489
952952

x18 + 1367141
21727305600

x20 + 32425891
75285113904000

x22

+ 4047099827
23087434930560000

x24 + 145806371
39501513648000000

x26
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+ 74849
1737058836344832

x28.
...

Then the series solution is given as u(x) = u0+u1+u2+ · · · . Some numeric
values of u(x) is given in table (2). One can construct a better approximate
polynomial by changing our homotopy. We revised the homotopy (5.10) as
follows

H(u, p) = u − x − p
x3

6
− 6p

∫ x

0

∫ x

0

u2dxdx = 0. (5.11)

Applying
∑∞

i=0 piui in (5.11) and comparing the same powers of p, we have

p0 : u0 = x

p1 : u1 = 1
6
x3 + 1

2
x4

p2 : u2 = + 1
15

x6 + 1
7
x7

p3 : u3 = 1
336

x8 + 1
40

x9 + 1
28

x10

p4 : u4 = 71
46200

x11 + 23
3080

x12 + 3
364

x13

p5 : u5 = 1
26208

x13 + 5219
8408400

x14 + 131
64680

x15 + 37
20384

x16

p6 : u6 = 3551
144144000

x16 + 19867
95295200

x17 + 489
952952

x18 + 75
193648

x19

p7 : u7 = 95
224550144

x18 + 163469
14378364000

x19 + 1367141
21727305600

x20 + 33067
266826560

x21

+ 219
2711072

x22

...

Then the series solution is given by

u(x) = x+ 1
6
x3 + 1

2
x4 + 1

15
x6 + 1

7
x7 + 1

336
x8 + 1

40
x9 + 1

28
x10 + 71

46200
x11 + 23

3080
x12

+ 31
3744

x13 + 5219
8408400

x14 + 131
64680

x15 + 1856357
1009008000

x16 + 19867
95295200

x17

+ 181219
352864512

x18 + 5732219
14378364000

x19 + 1367141
21727305600

x20 + 33067
266826560

x21

+ 219
2711072

x22 + · · ·

In table (2) a comparsion between numerical solutions of homotopy (5.10)
and homotopy (5.11) and numerical solutions which obtained by the variational
iteration method is given. A graphical comparsion is shown in figure (1).
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Figure 1: Comparsion between VIM, HPM and Maple results

x VIM HPM (5.10) HPM (5.11) Maple results
0.1 0.1002167477 0.1002167477 0.1002167477 0.1002167980
0.2 0.2021394527 0.2021394527 0.2021394527 0.2021395810
0.3 0.3086307490 0.3086307492 0.3086307492 0.3086309826
0.4 0.4239862788 0.4239862896 0.4239862896 0.4239865878
0.5 0.5543399110 0.5543401181 0.5543401190 0.5543405192
0.7 0.8992296944 0.8992493820 0.8992499224 0.8992504369
0.9 1.481778951 1.482444377 1.482517737 1.4825252525
1.0 1.959421042 1.962452186 1.963039368 1.9631292204
1.2 3.815497429 3.859792958 3.882059380 3.8908998547
1.4 9.212665846 9.657339885 10.15837961 10.726462766
1.5 15.87244591 17.11647598 19.16051446 23.751855594
1.6 29.40300724 32.60464299 40.27336198 90.421617620
1.7 58.27134634 65.78149064 92.4976098 37524.936553

Table 2 : Comparsion between VIM, HPM and Maple numerical results

6 Conclusion

In this paper the HPM and VIM applied to finding the approximate solutions
of Painlevé equation I with initial conditions. The numerical solutions are
compared with the numerical solutions from Maple in table (1), table (2) and
figure (1). The results showed that the homotopy perturbation method is more
powerful than variational iteration method and we will achieve to a desired
approximation to the solution by simple calculations by using the homotopy
formula (5.11). However, in this paper we showed application of HPM and
VIM methods for a problem which has no exact solutions.
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MAPLE has been used for computations in this paper.
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