Non Deterministic Recognizability of Fuzzy Languages

Olympia Louskou-Bozapalidou

Section of Mathematics and Informatics Technical Institute of West Macedonia Koila, Kozani, Greece

Abstract

We introduce non deterministic monoid recognizability (NDMR) of fuzzy languages and we show its equivalence with the deterministic version. Thus, fuzzy automata over the pairs (max, min), (max, Δ_L), (max, Δ_D) have the same recognition power as NDMR Δ_L, Δ_D , are the Lukasiewicz and drastic intersection respectively.

1 Introduction and Basic Facts

The set X^* of all words over the alphabet X, with the word concatenation as operation, becomes a monoid whose unit element is the empty word e.

A language over X (i.e. a subset of X^*) computed by a finite automaton is called recognizable.

Such languages can be characterized in purely algebraic terms: $L \subseteq X^*$ is monoid recognizable iff there exists a finite monoid M and a monoid morphism $h: X^* \to M$ so that $L = h^{-1}(P)$ for some $P \subseteq M$.

The above result was used in [BLB 1, 2] in order to define recognizability in the setup of fuzzy languages.

Precisely, we say that the fuzzy language $\phi: X^* \to [0, 1]$ is monoid recognizable (*m*-recognizable) if there exists a finite monoid M, a monoid morfism $h: X^* \to Y$ M and a fuzzy subset $a : M \to [0, 1]$ so that $\phi = a \circ h$.

An advantage of this consideration is that does not make use of any (algebraic or topological) structure of the unit interval [0, 1].

Next series of interesting logical equivalences was established in [BLB 1, 2]:

- 1. The fuzzy language $\phi: X^* \to [0, 1]$ is *m*-recognizable.
- 2. The syntactic congruence \sim_{ϕ} on X^{*} defined by $w \sim_{\phi} w'$ iff $\phi(\tau_1 w \tau_2) =$ $\phi(\tau_1 w' \tau_2)$ for all $\tau_1, \tau_2 \in X^*$ has finite index.
- 3. The syntactic monoid $M_{\phi} = X^* /_{\sim \phi}$ is finite.
- 4. ϕ has finitely many right derivatives

$$
card\left\{\tau^{-1}\phi/\tau \in X^*\right\} < \infty
$$

where $\tau^{-1}\phi: X^* \to [0,1]$ is given by

$$
(\tau^{-1}\phi)(w) = \phi(\tau w), \text{ for all } w \in X^*.
$$

5. ϕ has finitely many left derivatives

$$
card\{\phi\tau^{-1}\diagup\tau\in X^*\}<\infty
$$

where $\phi \tau^{-1} : X^* \to [0,1]$ is given by

$$
(\phi \tau^{-1}) (w) = \phi (w \tau), \text{ for all } w \in X^*.
$$

- 6. ϕ is the behavior of a (max, min)-automaton.
- 7. ϕ is the behavior of a (max, Δ_L)-automaton, where $\Delta_L : [0, 1]^2 \to [0, 1]$ is the Lukasiewicz intersection

$$
x \triangle_L y = \max(0, x + y - 1), x, y \in [0, 1].
$$

8. ϕ is the behavior of a (max, Δ_D)-automaton, where $\Delta_D : [0, 1]^2 \to [0, 1]$ is the drastic intersection

$$
x \triangle_D y = x
$$
 (if $y = 1$), y (if $x = 1$), 0 (else).

We denote by $m\text{-}Rec(X)$, the set of all m-recognizable fuzzy languages over X.

However, it should be noticed that m -recognizability cannot capture simple fuzzy languages such as

$$
\phi: X^* \to [0, 1], \phi(x) = \frac{1}{2^{|w|}}, w \in X^*
$$

with $|w|$ standing for the length of the word w.

This led us to introduce and study non deterministic m-recognizability.

2 Non Determinism

Let X be a finite alphabet, (M, \bullet, e) be a finite monoid.

We choose a t-norm \triangle : $[0,1]^2 \rightarrow [0,1]$ distributive over a t-conorm \bigtriangledown : $[0, 1]^2 \rightarrow [0, 1]$, that is the equality

$$
x \bigtriangleup (y \bigtriangledown z) = (x \bigtriangledown y) \bigtriangleup (x \bigtriangledown z)
$$

holds for all $x, y, z \in [0, 1]$.

Then we say that (∇, \triangle) is a distributive pair.

For instance (max, min) , $(\text{max}, \triangle_L)$ and $(\text{max}, \triangle_D)$ are distributive pairs.

The set $Fuzzy(M)$ of all fuzzy subsets of M with multiplication defined by the formula

$$
(\phi_1 \circ \phi_2) (m) = \bigvee_{m=m_1 \cdot m_2} \phi_1 (m_1) \bigtriangleup \phi_2 (m_2), m \in M
$$

becomes a monoid whose unit element is \hat{e} , the characteristic function of the singleton $\{e\}$.

A non deterministic represantation is a triple $\Re = (M, h, a)$, where M is a finite monoid, $h: X^* \to Fuzzy(M)$ is a monoid morphism and $a: M \to [0, 1]$.

It computes the fuzzy language

$$
\phi_{\Re}: X^* \to [0,1], \phi_{\Re}(w) = \sum_{m \in M} a(m) \Delta h(w)(m).
$$

In other words $\phi_{\Re} = \langle a, - \rangle \circ h$ where $\langle a, - \rangle$ is the inner product operator defined for all $\beta \in Fuzzy(M)$ by

$$
\langle a, \beta \rangle = \sum_{m \in M} a(m) \Delta \beta (m).
$$

We denote by $ndm\text{-}Rec(X, \bigtriangledown, \bigtriangleup)$ the set of all fuzzy laguages $\phi: X^* \to$ [0, 1] such that $\phi = \phi_{\Re}$, for some non deterministic represantation \Re .

Proposition 1. *It holds*

$$
m\text{-}Rec(X) \subseteq ndm\text{-}Rec(X, \bigtriangledown, \bigtriangleup).
$$

Proof. Assume that $\phi \in m\text{-}Rec(X, \bigtriangledown, \bigtriangleup)$ and let (M, \bullet, e) be a finite monoid, $h_1: X^* \to M$ a monoid morphism and $a: M \to [0,1]$ so that $\phi = a \circ h_1$. For each $m \in M$ we denote by \hat{m} the characteristic function of the singleton $\{m\}$. It holds $\hat{m}_1 \cdot \hat{m}_2 = \hat{m}_1 \cdot \hat{m}_2$ (for all $m_1, m_2 \in M$) and thus the mapping

$$
\wedge: M \to Fuzzy\left(M\right), m \mapsto \widehat{m}
$$

is a monoid morphism.

Furthermore, we have $\langle a, - \rangle \circ \wedge = a$. Indeed, for all $m \in M$ we have

$$
(\langle a, -\rangle \circ \wedge) (m) = \langle a, -\rangle (\widehat{m}) = \langle a, \widehat{m} \rangle
$$

=
$$
\sum_{n \in M} a(n) \triangle \widehat{m} (n) = a (m)
$$

It follows that

$$
\phi = a \circ h_1 = \langle a, - \rangle \circ \wedge \circ h_1
$$

and thus the non deterministic represantation $\Re = (M, \wedge \circ h_1, a)$ computes ϕ , i.e. $\phi \in ndm\text{-}Rec(X, \bigtriangledown, \bigtriangleup)$ as wanted. \Box

Example 2. Take the monoid $M = \{e\}$ reduced to its unit element e and *choose* $(\nabla, \Delta) = (\max, \Delta_m)$ *with* Δ_m *to be the t-norm* $x \Delta_m y = xy$ *. Then the monoid* $(Fuzzy (e), \bullet)$ *is obviously isomorhic to the monoid* $([0, 1], \triangle_m)$ *and the represantation* $\Re = (\{e\}, h, a)$ *with*

$$
h: X^* \to [0, 1], h(w) = \frac{1}{2^{|w|}} \text{ and } a(e) = 1,
$$

computes the fuzzy language $\phi(w) = \frac{1}{2^{|w|}}$. It turns out that the inclusion

 $m\text{-}Rec(X) \subset ndm\text{-}Rec(X, \max, \triangle_m)$

is proper.

Since in the crisp case, non determinism does not increase the recognition power of the used mecanism, the question is weather a analogous phenomenon appears in the fuzzy case. The answer depends on the used pair (∇, \triangle) . Let us recall that a (∇, \triangle) -*automaton* is a 5-tuple $\mathcal{A} = (Q, X, \delta, I, F)$ where Q is a finite set of states, X is the finite input alphabet, $\delta : X \to FRel(Q)$ is the move function and $I, F: Q \to [0, 1]$ are the initial and final fuzzy subsets of Q respectively.

Here, $FRel(Q)$ is the set of all fuzzy relations

$$
R: Q \times Q \to [0,1].
$$

The composition of any two $R, S: Q \times Q \rightarrow [0, 1]$ is given by

$$
(R \circ S) (p, q) = \bigtriangledown_{r \in Q} R(p, r) \bigtriangleup S (r, q)
$$

and obviously structures $FRel(Q)$ into a monoid. Thus δ above is uniquely extended into a monoid morphism $\delta^* : X^* \to FRel(Q)$ via $\delta^*(x_1,\ldots,x_k) =$ $\delta(x_1) \circ \cdots \circ \delta(x_k), x_1, \ldots, x_k \in X, k \geq 0.$

The behavior of A is then the fuzzy language $|\mathcal{A}| : X^* \to [0, 1]$ with

$$
|\mathcal{A}|(w) = \underset{p,q \in Q}{\nabla} I(p) \bigtriangleup \delta^*(w) (p,q) \bigtriangleup F(q), w \in X^*.
$$

 $Rec(X, \bigtriangledown, \bigtriangleup)$ stands for the set of all fuzzy languages obtained as behaviors of (∇, \triangle) -automata over X.

Theorem 3. *It holds*

$$
ndm\text{-}Rec\,(X,\bigtriangledown,\bigtriangleup)\subseteq Rec\,(X,\bigtriangledown,\bigtriangleup)
$$

for any distributive pair (∇, \triangle) .

Proof. Let $\mathbb{R} = (M, h, a)$ be a non deterministic represantation of $\phi \in ndm$ - $Rec(X, \bigtriangledown, \bigtriangleup)$, i.e. $\phi = \phi_{\Re}$. Consider the $(\bigtriangledown, \bigtriangleup)$ -automaton

$$
\mathcal{A} = (M, X, \phi, I = \{e\}, T = a)
$$

where e is the unit element of the monoid M, whereas $\delta: X \to FRel(M)$ is given by

$$
\delta(x) = (m.m') = \sum_{m' = mn} h(x) (n), x \in X, m.m' \in M.
$$

For all $x_1, \ldots, x_k \in X$ $(k \geq 0)$ we have

$$
\delta^*(x_1, \ldots, x_k) (m, m') = [\delta(x_1) \circ \cdots \circ \delta(x_k)] (m, m')
$$

=
$$
\bigtriangledown_{m_1, \ldots, m_{k-1} \in M} \delta(x_1) (m, m_1) \Delta \cdots \Delta \delta(x_k) (m_{k-1}, m')
$$

$$
= \left(\bigtriangledown_{m=m_{1}n_{1}} h(x_{1})(n_{1})\right) \triangle \left(\bigtriangledown_{m_{2}=m_{1}n_{2}} h(x_{2})(n_{2})\right) \triangle \cdots \triangle \left(\bigtriangledown_{m_{k-1}=m'n_{k}} h(x_{k})(n_{k})\right)
$$

$$
= \bigtriangledown_{m'=mn_{1}\cdots n_{k}} h(x_{1})(n_{1}) \triangle h(x_{2})(n_{2}) \triangle \cdots \triangle h(x_{k})(n_{k})
$$

$$
= \bigtriangledown_{m'=mn} [h(x_{1}) \bullet h(x_{2}) \bullet \cdots \bullet h(x_{k})](n)
$$

$$
= \bigtriangledown_{m'=mn} h(x_{1},\ldots,x_{k})(n) = \bigtriangledown_{m'=mn} h(w)(n).
$$

Consequently for all $w \in X^*$ we have

$$
|\mathcal{A}|(w) = \bigtriangledown_{m \in M} \delta^*(w) (e, m) \triangle a (m)
$$

=
$$
\bigtriangledown_{m \in M} h(w) m \triangle a (m)
$$

=
$$
\phi_{\Re}(w).
$$

In other words $|\mathcal{A}| = \phi_{\Re}$ and thus $\phi_{\Re} \in Rec(X, \bigtriangledown, \bigtriangleup)$ as wanted.

Theorem 4. *For* $(\nabla, \triangle) = (\max, \min), (\max, \triangle_L), (\max, \triangle_D)$ *we have the equality*

$$
m\text{-}Rec(X) = ndm\text{-}Rec(X, \bigtriangledown, \bigtriangleup).
$$

 \Box

Proof. In fact, by virtue of proposition 1 and theorem 3 above, we get

 $m\text{-}Rec(X) \subseteq ndm\text{-}Rec(X, \bigtriangledown, \bigtriangleup) \subseteq Rec(X, \bigtriangledown, \bigtriangleup).$

According [BLB 2] it holds

$$
Rec(X, \bigtriangledown, \bigtriangleup) = m\text{-}Rec(X)
$$

for all the pairs (∇, \triangle) of the statement. The proposed equality follows.

\Box

References

- [BLB 1] S. Bozapalidis and O. Louskou-Bozapalidou; On the recognizability of fuzzy languages I (submitted)
- [BLB 2] S. Bozapalidis and O. Louskou-Bozapalidou; On the recognizability of fuzzy languages II (submitted)

Received: September 17, 2006