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Abstract

We study linear combinations of independent fractional Brownian
motions and generalize several recent results from [10] and [17]. As
a first new result we calculate explicitly the Hausdorff dimension of
the sample paths of such processes. Moreover we compare different
notions of fractional differentiability and calculate as a second new result
explicitly the Cesáro fractional derivative of the critical oder. Moreover
we consider the more interesting absolute Cesáro fractional derivative
and calculate its value explicitly.
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1 Introduction

The classical fractional Brownian BH
t motion with Hurst parameter H ∈ [0, 1]

is a mean zero Gaussian process with covariance function

cov(BH
s , BH

t ) =
1

2
(s2H + t2H − |s − t|2H), s, t ≥ 0.

This generalization of the Wiener process (take H = 1
2

to obtain this process)
was introduced by Mandelbrot and Van Ness [9]. The study of this process is

1This work was supported by the Schweizerischer Nationalfonds grant SNF PP002-
114715/1.
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originally motivated by problems in finance, telecommunication and engineer-
ing applications. The fractional Brownian motion BH

t can also be written as

the following stochastic integral with respect to the Wiener process Bt = B
1/2
t ,

see [3]:

BH
t =

∫ t

0

KH(t, u)dBt

and KH obeys the differential equation

∂KH

∂t
=

(
2HΓ

(
3
2
− H

)
Γ
(

1
2

+ H
)
Γ(2 − 2H)

) 1
2 (

1

2
− H

)(u

t

) 1
2
−H

(t − u)H− 3
2 .

We like to point out that there exists also an explicit expression of the kernel
KH(t, u) in terms of hypergeometric functions, see [11]. A characteristic prop-
erty of this process is its self-similarity. This means that for any c > 0, the
time-space rescaled process c−HBH

ct has the same distribution as the original
process BH

t .
Recently several authors started to study processes of the following type:

Bt + aBH
t and a1B

H1
t + a2B

H2
t ,

see [10] and [17], where a, a1, a2 ∈ R and H, H1, H2 ∈ [0, 1]. The first process
was introduced in [2] to present a stochastic model of the discounted stock
price in some arbitrage-free and complete financial markets. Because of the
deficiencies of this model, the study of the second one was motivated. We will
generalize these approaches further and study linear combinations of N ∈ N

independent fractional Brownian motion, i.e. the process

Zt :=

N∑
k=1

akB
Hk
t ,

where a1, . . . , aN are real coefficients. Another motivation for our approach are
recent developments in modeling internet traffic using self-similar processes, see
[4] and the references therein. Stochastic differential equations whose driven-
ing is given by a sum of independent fractional Brownian motion (i.e. more or
less the process Zt) were already considered in [16].
We will start in the next section with some elementary properties, which gen-
eralize the results obtained in [10] and [17]. In Section 3 we consider the
correlation of the increments of Zt and show that the process Zt is long range
dependent. This is a property which makes it interesting for in particular fi-
nancial applications. Certain sample path properties of Zt are considered in
Section 4. As an auxiliary tool we calculate the maximal Hölder exponent,
which allows us to estimate the Hausdorff dimension of the sample paths of
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Zt from above. The lower estimate, which yields an equality at the end, is
obtained by the well known potential theoretic method based on Frostmann’s
famous lemma (cf. [5]). The last results are also new for the processes of
[10] and [17]. It is the aim of Section 6 to study fractional differentiability
of the sample paths of Zt. This problem was partially treated in the above
mentioned special cases in [10] and [17] and our result will generalize these ap-
proaches further. Moreover we will compare in Section 5 the different notions
of fractional derivatives, which can be found in the literature, see [14]. We
are also interested in local fractional derivatives introduced in [7] and further
developed in [8]. These notions will be compared with the approach of [15],
which is based on measure-geometric methods. We will further show that the
local fractional derivative of the critical order does not exists. However, the
fractional Cesáro derivative of the critical order vanishes, which are both new
result even in the case treated in [10] and [17]. This motivated us to consider
absolute fractional Cesáro derivatives, a concept introduced in [12]. As a re-
sult we will show that the fractional Cesáro derivative of the critical order is
positive and finite. We also calculate its exact value by applying linearity of
fractional differential operators and results from [12] and [13].

2 Elementary Properties

Let N ∈ N, a1, . . . , aN ∈ R and H1, . . . , HN ∈ [0, 1] and let

Zt :=
N∑

k=1

akB
Hk
t , t ∈ [0,∞),

where the BHk
t ’s are independent fractional Brownian motion with Hurst pa-

rameter Hk defined on some probability space [Ω,A, P].
It is clear that Zt is a Gaussian process, since linear combinations of Gaussian
processes are again a Gaussian process. Moreover, Zt is centered, i.e.

EZt = E

N∑
k=1

akB
Hk
t =

N∑
k=1

akEBHk
t = 0.

It also follows immediately that

EZ2
t = E

[
N∑

k=1

akB
Hk
t

]2

=

N∑
k=1

a2
k(B

Hk
t )2 =

N∑
k=1

a2
kt

2Hk .

The covariance function of Zt has the following form:

cov(Zt, Zs) = EZtZs = E

N∑
j,k=1

ajakB
Hj

t BHk
s =

1

2

N∑
k=1

a2
k(t

2Hk + s2Hk − |t− s|2Hk)
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for all t, s ∈ [0,∞). We show now that the process Zt has stationary incre-
ments. Since they are Gaussian, it suffices to show that they are uncorrelated.
We obtain for any t1, t2, t3, t4 ≥ 0

E(Zt2 − Zt2)(Zt4 − Zt3) = EZt2Zt4 + EZt1Zt3 − EZt1Zt4 − EZt2Zt3

=
1

2

N∑
k=1

ak(t
Hk
2 + tHk

4 − |t2 − t4|2Hk) +
1

2

N∑
k=1

ak(t
Hk
1 + tHk

3 − |t1 − t3|2Hk)

−1

2

N∑
k=1

ak(t
Hk
1 + tHk

4 − |t1 − t4|2Hk) − 1

2

N∑
k=1

ak(t
Hk
2 + tHk

3 − |t2 − t3|2Hk)

= 0,

which gives the desired result.
We introduce now the family of scaling operators S(c1,... ,cN ;H1,... ,Hn), c1, . . . , cN ≥
0, which act as follows:

N∑
k=1

fk(t) �→ S(c1,... ,cN ;H1,... ,HN )

(
N∑

k=1

fk

)
(t) =

N∑
k=1

c−Hk
k fk(ckt).

Especially for the process Zt we obtain

(S(c1,... ,cN ;H1,... ,Hn)Z)t =
N∑

k=1

akc
−Hk
k BHk

ckt =
N∑

k=1

akB
Hk
t ,

using the self-similarity of the fractional Brownian motions BHk
t mentioned in

the introduction. This shows that Zt is invariant under the family of transfor-
mations S(c1,... ,cN ;H1,... ,Hn), which is some kind of generalized self-similarity of
the process Zt.
We now turn to the Markov property of Zt. Obviously, if H1 = . . . = HN = 1

2
,

Zt is a Markov process (recall that the Wiener process is one). Otherwise,
if 0 < H1, . . . , HN < 1 and Hk �= 1

2
for all k = 1, . . . , N we show that the

covariance functions do not satisfy the equality

cov(Zs, Zu)cov(Zt, Zt) = cov(Zs, Zt)cov(Zt, Zu), s, t, u ≥ 0, (1)
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which is necessary for the Markov property of Zt, see [6, Prop. 13.7]. We take
s = 1

2
, t = 1, u = 3

2
and obtain first

cov(Z 1
2
, Z 3

2
) =

1

2

N∑
k=1

a2
k

((
1

2

)2Hk

+

(
3

2

)2Hk

− 1

)
,

cov(Z1, Z1) =

N∑
k=1

a2
k,

cov(Z 1
2
, Z1) =

1

2

N∑
k=1

a2
k,

cov(Z1, Z 3
2
) =

1

2

N∑
k=1

a2
k

(
1 +

(
3

2

)2Hk

−
(

1

2

)2Hk

)
.

Then (1) is equivalent to

N∑
k=1

a2
k

((
1

2

)2Hk

+

(
3

2

)2Hk

− 1

)
=

1

2

N∑
k=1

a2
k

(
1 +

(
3

2

)2Hk

−
(

1

2

)2Hk

)

and further to

3 + 32Hk − 3 · 22Hk = 0

for all k = 1, . . . , N simultaneously. But the last set of equations has only the
solution Hk = 1

2
for all k = 1, . . . , N , which was treated above.

We summarize our findings in the following

Theorem 2.1 The process Zt has the following properties:

(a) Zt is a Gaussian process with EZt = 0 and covariance function

1

2

N∑
k=1

a2
k(t

2Hk + s2Hk − |t − s|2Hk)

for all t, s ∈ [0,∞).

(b) Zt has stationary increments.

(c) Zt is S(c1,... ,cN ;H1,... ,HN )-invariant.

(d) Zt is not a Markov process, unless H1 = . . . = HN = 1
2
.
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3 Long Range Dependence

For each h > 0, the correlation coefficient of the increments Zt+h − Zt, t > 0,
is defined by

ρ(Zt+h − Zt, Zs+h − Zs) =
cov(Zt+h − Zt, Zs+h − Zs)√
V(Zt+h − Zt)V(Zs+h − Zs)

, s, t > 0.

The results from Theorem 2.1 show that

ρ(Zt+h − Zt, Zs+h − Zs) =

∑N
k=1 a2

kU(Hk)

2
∑N

k=1 a2
kh

2Hk

,

where

U(Hk) := (t + s − h)2Hk − 2(t − s)2Hk + (t − s − h)2Hk , ∀k = 1, . . . , N.

This implies that Zt has correlated increments. A detailed discussion of the
case N = 2 can be found in [10] or [17] for the more special case N = 2 and
H1 = 1

2
.

A random process Xt with stationary increments (note that the definition
given in [10], [17] cannot be satisfied by their own processes) is called long
range dependent, if the series

∞∑
n=1

r(n)

diverges, where
r(n) := cov(Z1, Zn+1 − Zn).

For our process Zt we have

Proposition 3.1 Zt is long range dependent if and only if there exists some
k ∈ {1, . . . , N} with Hk > 1

2
.

Proof The structure of the covariance function (see Theorem 2.1) and Talor’s
formula imply that

r(n) =

N∑
k=1

a2
kHk(2Hk − 1)n2H1−2 +

N∑
k=1

n2Hk−2fk(n)

and
lim

n→∞
fk(n) = 0 ∀k = 1, . . . , N.

From this it is easy to see that
∑

r(n) = +∞ if and only if there exists
k ∈ {1, . . . , N} with Hk > 1

2
. �
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4 Sample Path Properties

4.1 Hölder continuity

The well known Kolmogorov-Chentsov Theorem [6, Thm. 3.23] states that if

E|Zs − Zt|a ≤ const|s − t|1+b, s, t ≥ 0

for some a, b > 0, the process Zt has a modification, which is a.s. α-Hölder
continuous for any α ∈ (0, b/a).
Denote by m the minimal Hurst exponent of components of Zt, i.e. m :=
min1≤k≤N Hk. It is easy to see that for any p ≥ 2 there exists some constant
c, such that

E|Zt − Zs|p ≤ c
(
E|Zs − Zt|2

)p/2

(recall that Zt is a Gaussian process). Using Theorem 2.1 and the definition
of m we can further estimate that

c
(
E|Zs − Zt|2

)p/2 ≤ c|s − t| 2mp
2 = c|s − t|mp = c|s − t|1+mp−1.

Let now b := mp− 1 and a := p. Then Zt has a modification, whose paths are
α-Hölder continuous for any

α =
mp − 1

p
= m − 1

p
→ m.

We summarize the result in the following

Proposition 4.1 The process Zt has a modification, which is α-Hölder con-
tinuous for any

α < min
1≤k≤N

Hk a.s.

From now on we will work with this modification.

4.2 Hausdorff Dimension of the Graph

The s-dimensional Hausdorff measure of a set A ⊂ R
d, s ≥ 0 a real number,

is defined by

Hs(A) := lim
δ→0

inf

{ ∞∑
k=1

|Ak|s : A ⊂
∞⋃

k=1

Ak, |Ak| < δ

}
,

where |Ak| is the diameter of the set Ak and the infimum is taken over all
coverings (Ak)k∈� of A. If s ∈ N than Hs equals up to a known constant the
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s-dimensional Lebesgue measure Ls.
The Hausdorff dimension of the set A ⊂ R

d is defined by

dimH A := sup{s ≥ 0 : Hs(A) = +∞} = inf{s ≥ 0 : Hs(A) = 0}.

It is the purpose of this section to calculate the Hausdorff dimension of the
graph of the process Zt. We will split this task into two parts, upper bound
and the more involved lower bound.

4.2.1 Upper Bound

We start with the following easy Lemma, see [5, Cor. 11.2]: Let f : [a, b] → R
2

α-Hölder continuous for some α ∈ (0, 1]. Then we have

dimH graph f ≤ 2 − α.

For a random process Xt the statement remains true, if Xt is α-Hölder contin-
uous with probability 1.
From Proposition 4.1 we know that our process Zt is α-Hölder continuous for
any α < min Hk. This implies that for any fixed T > 0 we have

dimH graph Zt|[0,T ] ≤ 2 − min
1≤k≤n

Hk a.s.

And this implies
dimH graphZt ≤ 2 − min

1≤k≤n
Hk a.s.

4.2.2 Lower Bound and the Result

A well known method for calculating the Hausdorff dimension of a set A is
the potential theoretic method [5, Thm. 4.13], which will be explained now for
completeness. Let μ be a finite measure on A (or R

d) and define its s-Energy
(s ≥ 0) by

Is(μ) :=

∫ ∫
1

|x − y|sdμ(x)dμ(y).

Then we have:

If Is(μ) < ∞ for some finite measure on A then dimH A ≥ s.

We use now the potential theoretic method to obtain the lower bound for
the estimate of the Hausdorff dimension. We therefore fix some T > 0 and
consider the occupation measure μω(·) defined by

μω(B) :=

∫ T

0

1B(t, Zt(ω))dt, B ∈ B2,
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where B2 is the Borel σ-algebra on R
2. This is a random measure concentrated

on the graph of Zt, when the time parameter t is restricted to the finite interval
[0, T ]. We show now that

E

∫
A

∫
A

1

|x − y|β dμω(x)dμω(y) < ∞

for A := graph Zt|[0,T ] for all β < min Hk. Let therefore x = (u, Zu), y =
(v, Zv) and calculate

1

2
E

∫
A

∫
A

1

|x − y|β dμω(x)dμω(y)

=
1

2
E

∫ T

0

∫ T

0

[
(u − v)2 − (Zu − Zv)

2
]−β/2

dudv

= E

∫ T

0

∫ T−v

0

[
u2 + (Zu+v − Zv)

2
]−β/2

dudv

≤ E

∫ T

0

∫ T

0

[
u2 + (Zu+v − Zv)

2
]−β/2

dudv

=
∞∑

n=−k

E

∫ rnc

rn+1c

∫ T

0

[
u2 + (Zu+v − Tv)

2
]−β/2

dudv,

where k is the smallest natural number, for which T ≤ r−kc and c is constant.
We substitute now u = rns, v = rnt and use the property that Zt has stationary
increments to obtain

=

∞∑
n=−k

rn

∫ c

rc

rn

∫ Tr−n

0

E
[
r2ns2 + (Zrn(s+t) − Zrnt)

2
]−β/2

dtds

=
∞∑

n=−k

rn

∫ c

rc

rn

∫ Tr−n

0

E
[
r2ns2 + (Zrns − Z0)

2
]−β/2

dtds

≤ T
∞∑

n=−k

rn

∫ c

rc

∫ Tr−n

0

1

Tr−n

∫ ∞

−∞

[
r2ns2 + Nam′r2nmx2

]−β/2

· 1√
2πsm

e−
x2

2s2m dxdtds, (2)

where m := minHk and m′ := max Hk. Since

1

T

∫ T

0

1√
2πsm

e−
x2

2s2m dx =
1

2T
Φ

(
T

2sm

)
< ∞
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(here Φ(·) is the distribution function of the standard normal distribution) we
get

(2) ≤ const ·
∞∑

n=−k

rn

∫ c

rc

∫ ∞

−∞

[
r2ns2 + Nam′r2nmx2

]−β/2
dx︸ ︷︷ ︸

=:I

ds. (3)

The inner integral I can be evaluated explicitly:

I =
πs(r2ns2)−β/2Γ(−1/2 + β/2)

Γ(β/2)(Nam′r2nm−2n)1/2
∼ const · s1−βrn(1−β−m).

Thus

(3) ≤ const ·
∞∑

n=−k

rn

[∫ c

rc

s1−βds

]
︸ ︷︷ ︸

=const

rn(1−m−β)

≤ const ·
∞∑

n=−k

rn(2−m−β) < ∞,

since 2 − m − β < 0 by the assumption on β.
Multiplying by a factor 2 we have shown that

E

∫
A

∫
A

1

|x − y|β dμω(x)dμω(y) < ∞.

The potential theoretic method implies now

dimH graph Zt|[0,T ] ≥ 2 − min
1≤k≤N

Hk

for all T > 0 and this implies the desired result

dimH graph Zt ≥ 2 − min
1≤k≤N

Hk.

Combining the above lower estimate with the upper estimate from Section
4.2.1 we obtain

Theorem 4.2 The Hausdorff dimension of the graph of Zt equals 2− min
1≤k≤N

Hk

with probability 1.

Note that this is a non-trivial statement and it does not follow from the
σ-additivity of the Hausdorff dimension, which says that for sets A1, A2, . . .
we have

dimH

∞⋃
k=1

Ak = sup
k

dimH Ak.
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5 Elements of Fractional Calculus

Let 0 < α < 1 and fix some bounded interval (a, b). The left- and right-sided
Riemann-Liouville integral of fractional order α of a function f ∈ L1(a, b) are
defined by

Iα
a+f(x) =

1

Γ(α)

∫ x

a

(x − y)α−1f(y)dy,

Iα
b−f(x) =

1

Γ(α)

∫ b

x

(y − x)α−1f(y)fy.

The semi-group property of fractional integration reads as follows

Iα
a+Iβ

a+f = Iα+β
a+ f and Iα

b−Iβ
b−f = Iα+β

b− f,

in any point for f ∈ C(a, b) or f ∈ L1(1, b) and α + β ≥ 1 or in almost all
points for f ∈ L1(a, b).
The inverse operators of Iα

a+ and Iα
b− can for 0 < α < 1 be defined as

Dα
a+f(x) =

1

Γ(1 − α)

d

dx

∫ x

a

(x − y)−αf(y)dy =
d

dx
I1−α
a+ f(x),

Dα
b−f(x) =

(−1)α

Γ(1 − α)
− d

dx

∫ b

x

(y − x)−αf(y)dy = (−1)α

(
− d

dx

)
I1−α
b− f(x).

They are called left- and right-side Riemann-Liouville fractional derivative.
With these definitions we have

Iα
a+Dα

a+f = f and Iα
b−Dα

b−f = f

for suitable functions f and any 0 < α < 1. For general α > 0 (i.e. α ≥ 1) the
above definitions can be extended in the following way: Write α = [α] + {α}
and define

Dα
a+f(x) :=

(
d

dx

)[α]

(D{α}
a+ f)(x), (4)

Dα
b−f(x) :=

(
− d

dx

)[α]

(D{α}
b− f)(x), (5)

provided the expressions exist.
For the case, when the interval (a, b) is replaced by the whole real axis, one can
take the limits a → −∞, b → ∞ of the above expressions. These limits can be
understood in the sense of absolute convergence as well as in the more general
sense of conditional convergence (cf. [14]). In both cases, the operators Dα

l
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and Dα
r are called left- and right-sided Wely-Marchaud derivatives of fractional

order α. For 0 < α < 1 and f ∈ C1(R) they may be written as

Dα
l f(x) =

α

Γ(1 − α)

∫ ∞

0

f(x) − f(x − y)

y1+α
dy, (6)

provided that f and f ′ decrease at least as |x|α−1−ε, ε > 0, as x → −∞,
see [14, p. 109] (analogously for the right-sided case Dα

r f(x)). But (6) does
make sense for more general functions f . We therefore take this expression as
a definition, provided that it exists. For general α > 0 the definition can be
extend as in (4) and (5), respectively.
In [7] and [8], the concept of local fractional derivative was introduced and
considered. The (Kolwankar-Gangal) local α-fractional derivative of a function
f at x is defined as

D
αf(x) := lim

y→x
Dα

y+(f(y) − f(x)),

provided the limit exists. Using the definition of the Riemann-Liouville deriva-
tive, it is easy to see that D

αf(x) can also be written as

D
αf(x) =

1

Γ(1 − α)
lim
y→x

d

dx

∫ y

x

(f(t) − f(x))(y − t)−αdt.

Denoting the inner integral by I(y), the above expression may be interpreted
as the derivative of I at x, i.e. I ′(x), provided it exists. An easy calculation
shows now that

Proposition 5.1 D
αf(x) = Γ(1 + α) lim

Δ→0

f(x + Δ) − f(x)

Δα
.

(We like to mention at this point that there is an error in the calculations
of [8, Prop. 2].) In [8] this last proposition is used as a definition of the local
fractional derivative. For 0 < α < 1 put

Dα
l f(x) := −Γ(1 + α) lim

Δ→0

f(x − Δ) − f(x)

Δα
,

Dα
r f(x) := Γ(1 + α) lim

Δ→0

f(x + Δ) − f(x)

Δα
.

If Dα
r f(x) = Dα

l f(x) = Dαf(x), then f is called locally α-differentiable at x.
The real number

α(x) := sup{α ≥ 0 : Dαf(x) exists}
is called in [7] the critical oder of differentiability of f at x. For more details
and the connection of this kind of fractional derivative and the Weyl-Marchaud
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derivative we refer to [8].
A much more general concept of local fractional differentiability was however
already introduced in [15]. In this paper the author defined the so-called
lower- and upper fractional Cesáro derivative of order α, 0 < α < 1 by taking
the Cesáro average in the definitions of Dα

l and Dα
r on the logarithmic scale

(omitting the factor Γ(1 + α)):

dαf(x) := lim inf
T→∞

1

T

∫ 1

e−T

f(x + y) − f(x)

yα

1

y
dy,

dαf(x) := lim sup
T→∞

1

T

∫ 1

e−T

f(x + y) − f(x)

yα

1

y
dy.

A function f is said to have a fractional Cesáro derivative of order α at x if
dαf(x) = dαf(x) = dαf(x). By [15, Prop. 2] there exists for any x in the
domain of f a unique γ(x), such that

lim sup
T→∞

1

T

∫ 1

e−T

|f(x + y) − f(x)|
yα

1

y
dy =

{
0 : α < γ(x)

∞ : α > γ(x).

The value γ(x) is called the fractional degree of differentiability of f at x. This
definition is justified by the following fact [15, Thm. 2]:

Proposition 5.2 Let γ(x) be the fractional degree of differentiability of f
at x. If α > γ(x) then the Weyl-Marchaud derivative Dα

r f(x) does not exist
and for α < γ(x) it exists iff∫ ∞

1

|f(x + y) − f(x)|
y1+α

dy < ∞.

The additional averaging ensures that the expression exists also in such
situations, where too many rapid oscillations occur and the limit without av-
eraging does not make sense. From the definitions and some standard analysis,
the following comparison result is easily seen:

Theorem 5.3 Let f be a function and x a value in its domain. If f is
locally α-differentiable at x, then Γ(1 + α)dαf(x) = Dαf(x) and the fractional
degree of differentiability of f at x equals the critical order α of f at x. More-
over, the Wely-Marchaud derivative of f exists iff∫ ∞

1

|f(x + y) − f(x)|
y1+α

dy < ∞.
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Note that the other direction is not necessarily true. In particular there
are examples of functions, for which dαf(x) exists, but not Dαf(x). We will
see later that the Wiener process, the fractional Brownian motion and also our
process Zt provide examples for this fact. This point was already stressed in
the introduction of [12] for the case of the Wiener process as a motivation for
the definition of the fractional Cesáro derivative dα.
We apply our findings now to functions, which are Hölder continuous.

Corollary 5.4 Let f be α-Hölder continuous, i.e. there exists a finite con-
stant c > 0 with |f(x + y) − f(x)| ≤ c|x − y|α for all x, y in the domain of f .
Then α(x) = γ(x) = α for all x in the domain of f .

6 Fractional Differentiation of the sample paths

of the process Zt

We want to study the fractional differentiability of the process Zt. It is easy
to see that both, the Kolwankar-Gangal fractional derivative as well as the
fractional Cesáro derivative are linear, which means that

Dβ(af + bg)(x) = aDβf(x) + bDβg(x)

dβ(af + bg)(x) = adβf(x) + bdβg(x)

for suitable functions f, g and real numbers a, b, β. Furthermore Corollary 5.4
holds in the random case:

Proposition 6.1 Let Xt, t ∈ [0,∞), be random process which is α-Hölder
continuous with probability 1, 0 < α < 1. Then the critical order of differen-
tiability and the fractional degree of differentiability agree and are equal to the
order of Hölder continuity, i.e. α(t) = γ(t) = α almost surely for almost all
t ∈ [0,∞).

From Section 4 we know that Zt is a.s. α-Hölder continuous of any oder
α < min1≤k≤N Hk. Recall further that the random process Zt is a linear combi-
nation of fractional Brownian motion. This together with the last proposition
and the linearity of the fractional differential operators leads to

Theorem 6.2 For the random process Zt we have

γ(t) = α(t) = min
1≤k≤n

Hk a.s.
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In [10] and [17] a similar result for critical order was also obtained, but
these authors used other techniques. Unfortunately, they did not consider the
case of the critical order. In particular the question if DαZt exist remained
open. In fact the law of iterated logarithm

lim sup
t→0

BH
t

tH(2 ln | ln t|)1/2
= 1 a.s.

from [1] shows that

DHBH
t = Γ(1 + α) lim

Δ→0

BH
t+Δ − BH

t

ΔH
= ∞ a.s. for a.a. t ∈ [0,∞)

and this immediately implies by using linearity of Dα that

DαZt =

{
0 : α < min Hk

+∞ : α ≥ Hk

with probability 1 and for almost all t. Therefore we will use here the more
general concept of fractional Cesáro differentiability and determine dαZt for
α = minHk. We apply the results from [12] to obtain first

dHkBHk
t = 0 a.s.

for a.a. t ∈ [0,∞). By linearity this shows that

dαZt =
N∑

k=1

akd
αBHk

t = 0

with probability 1 for almost all t ∈ [0,∞). It means that the averaging
procedure in the definition of dα is was useful in order to ensure the existence
of fractional derivatives of fractal functions. This fact was already explained
in some detail in [12] and [15]. We summarize now our results:

Theorem 6.3 We have with probability 1 for almost all t ∈ [0,∞)

dαZt =

{
0 : α ≤ min1≤k≤N Hk

+∞ : α > min1≤k≤N Hk

for a.a. t ∈ [0,∞). Moreover, by Theorem 5.3 and the law of iterated logarithm
for the fractional Brownian motion, the Weyl-Marchaud derivative Dα

r Zt does
not exist with probability 1 and for almost all t ∈ [0,∞) for any α > 0.
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Regarding the last result, it seems therefore to be more promising to con-
sider the absolute fractional Cesáro derivative of a function f order α at x,
which is defined as

|dα|f(x) := lim
T→∞

1

T

∫ 1

e−T

|f(x + y) − f(x)|
yα

1

y
dy.

Again using [12] we obtain for the component processes

|dHk |BHk
t = E|BHk

1 | a.s. for a.a. t ∈ [0,∞).

The linearity implies now together with Theorem 6.2

Theorem 6.4 We have with probability 1 for almost all t ∈ [0,∞)

|dα|Zt =

⎧⎪⎨
⎪⎩

0 : α < min1≤k≤N Hk∑N
k=1 akE|BHk

1 | : α = min1≤k≤N Hk

+∞ : α > min1≤k≤N Hk.

Note that in [12] (Thm. 1 and its Corollary) certain ergodicity conditions
are assumed. It is easy to verify that they are fulfilled for random processes
with stationary and independent increments and it was shown in [13, pp. 92-
93] that these ergodicity properties are also fulfilled for fractional Brownian
motion. It is easily seen that the same would hold true for our process Zt, but
this does not enable us to apply the results from [12] directly to the random
process Zt, since Zt does not fit into the theory of self-affine random functions.
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