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Abstract 
 
 

In this paper, generalized quasi-likelihood estimation for a Poisson Process 
model with a dependent structure is developed incorporating knowledge of skewness 
and kurtosis. This is a generalization of a similar idea proposed for independent 
observations by Godambe and Thompson (1989). The generalized quasi-score 
function is constructed on the basis of non-orthogonal estimating function invoking 
the method of Durairajan (1992).  
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1. Introduction 
 
 
In this paper, we discuss a class of statistical models called generalized linear 

models that is a natural generalization of classical linear models. Generalized linear 
models are widely used as a standard tool in modern regression analysis. Successful 
modeling based on generalized linear models relies on correctly specified model 
components including the random part and the systematic part. In a classical 
generalized linear model, the random part requires specification of a distribution from 
the exponential family. This distribution assumption can be relaxed through the 
specification of a variance function by Wedderburn's (1974) quasi-likelihood 
approach. The systematic part of the model includes a linear predictor and a link 
function. The linear predictor typically is a single index, i.e. a linear combination of 
the predictors. A single index provides a dimension reduction step. The value of the 
single index is related to the mean through the link function. Correct specification of 
link and variance functions are key ingredients for successful statistical modeling of a  
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generalized linear model with quasi-likelihood, in the simple situation where a single 
linear predictor is indeed sufficient for modeling the relationship between covariates 
and means. We note that consistency of the regression parameter estimates depends 
on a correctly specified link function, while efficiency depends on a correctly 
variance function, the importance of choosing a correct link function. However, the 
price of misspecifying the variance function is not only loss of efficiency of the 
regression parameter estimates but also incorrect confidence regions and test results. 
          

 Within the framework of stochastic processes, Godambe (1985) established 
the optimality of certain estimating functions that are linear combinations of 
orthogonal estimating functions and showed that these optimal estimating equations 
are extensions of the quasi-likelihood equation for independent observations 
developed by Wedderburn (1974). Thus, the theory of estimating function, in addition 
to providing satiating equations has led to its extensions. The concept and technique 
of quasi-likelihood estimation for independent observations have been extended by 
Godambe and Thompson (1989) by incorporating possible knowledge of the 
skewness, kurtosis and higher moments of the underlying distribution and the 
extended quasi-score function has been developed by these authors. The generality of 
the extended quasi-likelihood estimation of Godambe and Thompson (1989) is 
derived from the theory of orthogonal estimating functions due to Godambe (1985). 
Durairajan (1992) considered non-orthogonal 'basis' of estimating functions and 
obtained a closed form for the optimal estimating function among those spanned by 
such a basis. In this paper, the approach of Durairajan is employed to develop 
generalized quasi-likelihood estimation for a semi-parametric model with dependent 
observations incorporating knowledge of skewness and kurtosis. William and 
Durairajan (1999) have developed the quasi-likelihood estimation for a semi-
parametric model with a dependent structure by incorporating knowledge of skewness 
and kurtosis. This is a generalization of a similar idea proposed for independent 
observations by Godambe and Thompson (1989). The generalized quasi-score 
function is constructed on the basis of non-orthogonal estimating functions invoking 
the method of Durairajan (1992). The modeling issue is to identify the way in which 
the variance increases with the mean. In practice it is sometimes the case, that 
the relationship between the variance and the mean is (approximately), 
McCullagh and Nelder, 1989, it is often possible to characterize the first two moments 
of the response variable with unknown distribution of the form: 

( ) ( )βμ iiy =Ε  

( ) ( ) ( )θφε iii yy Ε== varvar   ,    3.2.1.0=θ     

. φ  is possibly unknown scale parameter or dispersion parameter   

. ( )⋅V  is the variance has known functional form. The function 
- that is, the variance is proportional to a power of the mean. Most common values of 
θ  are the values 3,2,1,0  which correspond to variance functions associated with 
normal, Poisson, gamma, and inverse Gaussian distributions respectively. The Box–
Cox method can be used for investigating whether the variance is of the form in data – 
and also for identifying a transformation of data onto a scale where the variance is 
approximately constant. However, it is not  
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necessary to work with data with constant variance provided that the variance 
function can be identified. A method for doing this is presented in the following. We 
calculate the variances and means for each group in data, i.e. for each combination of 
sample. 
  

However, it is not necessary to work with data with constant variance 
provided that   the variance function can be identified. 
However, QL naturally comes into plays an important role in connection with  
."Normal-Like" data where variance  ( ) ( ) μφμφ == Vy j  ( )( )1=μV  
."Poisson-Like" data where variance  ( ) ( ) μφμφ == Vy j  ( )( )μμ =V  

."Gamma-Like" data where variance ( ) ( ) 2μφμφ == Vy j , ( )( )2μμ =V  
This means that if it can be justified that 
.The variance is constant as a function of the mean, then one can work with the 
Gaussian variance function-even if data are not normally distributed. 
.The variance is proportional the squared mean, then one can work with the Gamma 
variance function-even if data not gamma distributed. 
. If 1=φ then variance equals the mean, then one can work with the Poisson 
distributed. In Section 2, used non-orthogonal estimating functions. In Section 3 the 
semi-parametric model under consideration is described and the generalized quasi-
score function is derived. Application of the new theoretical results will bee discussed 
in Section 4.  
 
 

2. Non-orthogonal and estimating functions  
 
    

Let { }x=Χ  be an abstract sample space and  { }F=ℑ  be a class of 

distribution function onΧ . Let ( )′= mr θθθθ ,,,,1 LL  be a vector parameter with real 
components defined on ℑ  such that{ } Ω≡θ . Let further ,,,1, kjh j L= with 
arbitrary k , be real function on Ω×Χ  such that  

( )( ){ } 0, =ΧΕ jjF Fxh θ , ℑ∈F ,               (2.1) 

where { }jF Χ⋅Ε  is the expectation under F , conditional on jj ΧΧ , being a specified 
partition (or technically a σ -field generated by a partition) ofΧ , kj ,,1L= . For 
simplicity we use the following notation: 

{ } ( ) { }⋅Ε≡Χ⋅Ε jjF .    

Note. Our theory does not require that the function kjh j ,,1, L= , satisfying (2.1) be 
exhaustive. The choice of specific function jh would be determined by the underlying 
statistical problem. This will be clear from the subsequent applications. To estimate θ  
on the basis of an observation x we consider the class of estimating functions  

{ } ( )mr ggggg ,,,,, 1 LL==℘  
 where 
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∑
=

=
k

j
jrjr ahg

1
                  (2.2) 

jra  being some real function on Ω×Χ  which is measurable with respect to the 
partition jΧ  in (2.1), for kj ,,1L= . And mr ,,1L= . An estimate of  θ  based on the  
estimating function g is obtained by solving the estimating equation 
( ) 0, =θxg  for the observed x . 

Let ( ) ( )( )FFS ijσ=  be non-singular for every ℑ∈F  with 
( ) ( ) ( )[ ]θθσ ,., xhxhF jiijij Ε= , kji ,,1, L= ,              (2.3) 

where ( )⋅Ε ij  denotes ( ){ }jiF Χ∪Χ⋅Ε σ . Also, let ( ) ( )( )FhFH ij= be a km× matrix 
with 

( ) ( )ijjij hFh θ∂∂Ε= , kj ,,1L=  mi ,,1L= .             (2.4) 

 Denoting ( )′= khhh L,1 , the estimating function  
hSHg 1−∗ =  is optimal .                                                    (2.5)  

 
 
 

 

3. The generalized quasi-score function 
 

 
To apply the theory of generalized linear models, we replace the abstract 

sample space { }x=Χ  by nR , Let ( )nxxx ,,1 L=  denote the observations from a 
process with sample space nR  and { }Ff =  be a family of distributions on nR  and 

( )mθθθ ,,1 L=  be a parameter defined on f . Let ( )11 ,, −= ii xxX Lσ , ni ,,2,1 L=  be 

the σ -fields on nR  with 1X  being the trivial σ -field.  
            ( ) ( ){ }Fx iiF θμ=Ε  and ( ){ }[ ] ( ) ( ){ }FVFFx iiiF θφθμ =−Ε 2                     (3.1) 
for all ℑ′∈F niVii ,,1,, L=μ , and φ are specified real function of the indicated 
variables, ( )mr θθθθ ,,,,1 LL=  being as before the vector parameter with real 
components defined onℑ′ . The usual setup of generalized linear models (McCullagh 
and Nelder, 1983) relates to ours as follows. In (3.1), the 'link' function, that is the 
specified dependence of iμ on a linear combination of mθθ ,,1 L , is not assumed or 
emphasized. Instead, we assume iμ  to be any specified function 
of ( )nr θθθθ ,,,,1 LL= . Similarly, in contrast with the usual setup in (3.1), we do not 
assume the function iV  to depend on θ  only through iμ . The dispersion parameter φ  
in (3.1) is allowed to depend on F , but is functionally independent ofθ . The case 'φ  
known' is the case where ( ) 0φφ =F , a known number, for all ℑ′∈F . This generality is 
introduced for mathematical clarity and extended application, and of course our 
results apply directly to the usual setup.. Now in addition to the relationships between 
means and variances given by (3.1), further suppose that 
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where  i1γ  and i2γ , ni ,,1L= , are assumed known and do not depend on 11 ,, −ixx L .  
Note that equation (3.1) prescribes that the conditional mean of ix  given ( )11 ,, −ixx L  
depends on the values of 11 ,, −ixx L . Apart from θ  but the conditional variance of ix . 
Does not depend on 11 ,, −ixx L . Also, equation (3.2) prescribes that the skewness and 
kurtosis of the conditional distribution of ix  given ( )11 ,, −ixx L  are known constants 
not depending on the values of 11 ,, −ixx L . Now, for the above semi-parametric model 
we develop a generalized quasi-likelihood estimation and the associated notion of 
generalized quasi-score function by considering (a basis of) non-orthogonal 
estimating functions using the approach of Durairajan (1992).  

 
If we assume that the series is partly autoregressive and partly moving 

average, we obtain a quite general quasi-likelihood estimation technique.  
Let ( )nxxx ,,1 L= denote the observations from a process with sample space 

nR and { }F=τ be a family of distribution on nR  and ( )rθθθ ,,1 L= , ( )mr φφφ ,,1 L+=  
be a parameter defined onτ . Let { }11 ,, −=Χ ii xx Lσ , ni ,,1L= be the σ -field on nR  
with 1Χ  being the trivial σ -field. Where i2γ  and i2γ , ni ,,1L= are assumed known 
and do not depend on 11 ,, −ixx L . Note that equation (3.1) prescribes that the 
conditional mean of ix  given ( )11 ,, −ixx L . Depends on the values of 11 ,, −ixx L  apart 
from θ  but the conditional variance of ix  does not depend on 11 ,, −ixx L , equation 
(3.2) prescribes that the skewness and kurtosis of the conditional distribution of ix  
given ( )11 ,, −ixx L  are known constants not depending on the values of 11 ,, −ixx L . 
Now, for the above semi-parametric model we develop a generalized quasi-likelihood 
estimation and the associated notion of generalized quasi-score function by 
considering (a basis of) non-orthogonal estimating function using the approach of 
Durairajan (1992). We consider the following estimating function: 

( )iiii xxhh Ε−== 1 ,    ( )iiiin xhhh var2
12 −==+ ,   ni ,,1L=            (3.3) 

and the σ -fields iX , ni ,,1L= , as defined at the beginning of the section 
and jjn XX =+ , nj ,,1L= . For ni ,,1L=  

( ) i
2

1 V var φ==Ε ii h        
where k,1,...,j   ,h j =  be real functions 

( ) ( )2
3

i1211n , V φγ iiii hh =Ε +  
and   

( ) ( ) 22
2

2 2 iiinin Vh φγ +=Ε ++  
for ji ≠  

( ) ( ) ( ) ji     ,    022211 ≠=Ε=Ε=Ε jiijjijijjiij hhhhhh  
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hence, 
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and 
 
 

( )( )ijj hH θ∂∂Ε= ,  
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with some computation, we get the thr element of 112

1
222 ×== ×

−
××

∗ mhSHg nnnnm  as 
              ( )∗∗∗∗ = ngggg ,,, 21 L  
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= =
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jnjjj hahag
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suppose in addition, the dispersion parameter  φ   is to be estimated: Then, there is an 
additional row in H which is equal to [ ]. ,...,,0,...,0 1 nVV−  the last element 
of hHSg 1−∗ =  is then given by  
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ifφ is known, the optimal estimating equations for ( )′= m1 ,,  θθθ K  are given by 

equation. (3.6) as ( ) .0,...,1 =
′

= ∗∗∗
mggg  If φ  is unknown, then the estimating  

equations which a re jointly optimal for ( )φθ ,  are given by equation. (3.6) and (3.7) 
as 0g , 0 == ∗∗

φg . In the literature (Wedderburn, 1974), the first term on the right 
hand side of (3.6) is called the derivative of the quasi-likelihood function; we would 
call it the quasi-score function. The quasi-likelihood equation is given by 'the quasi-
score function=0'. 
 
 

4. A discrete skeleton of a Poisson process  
 
 

Let{ }0, ≥rX r  be a homogeneous Poisson process with parameter λ  

where rX  denotes the number of occurrences of a certain event upto time ''r . Let 

{ }nrrr XXXX ,,,,0 210 L=  be a discrete skeleton of the process on which 

observations are available, where { }nrr <<L1  are any fixed but arbitrary points on 

the time space. That is, the process { }rX  is observed at arbitrary time points on the 

time space nrrr ,,, 21 L . 
 

Let ,,0,0 00 iri XYYr ===  ni ,,1L= . Then, 1−− ii YY  follows Poisson 

distribution with mean { }1−− ii rrλ .  Here,   
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{ }11 −− −+= jjjj rrY λμ  nj ,,1 L=   and 

Variance{ } ( )λφ jjj VYYY =−11 ,,L , where  

1=φ ,  ( ) ( )1−−= jjj rrV λλ  nj ,,1L=   also,  

( )[ ] ( )111
3 ,, −− −=−Ε jjjjj rrYYY λμ L   and  

 ( )[ ] ( ) ( )1
2

1
2

11
4 3,, −−− −+−=−Ε jjjjjjj rrrrYYY λλμ L    

Then, again in the notation of section 3,  

( )1
1

1

−−
=

jj
j rrλ

γ  ,    ( )1
2

1

−−
=

jj
j rrλ

γ      

The generalized quasi-score function = 0' of Equs. (3.6). reduce in this case to   
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j V
tt 1  

Also,  

 12
1

1
−−

= jjj VVγ  
The generalized quasi score function is 

 
n

nt
n

n

t
X

t
Y

g
−

=−=
λλ

* .                          (3.8) 

The equation 0* =g  gives 
n

nt

t
X

=λ̂ . It may be noted that the (usual) likelihood 

function of the observables  ( )ntt xx ,,1 L      from a Poisson process is same as the 

above *g    given in equs. (4.5) and the solution λ̂   is same as the usual likelihood 
estimate. 
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