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Abstract

In this paper, generalized quasi-likelihood estimation for a Poisson Process
model with a dependent structure is developed incorporating knowledge of skewness
and kurtosis. This is a generalization of a similar idea proposed for independent
observations by Godambe and Thompson (1989). The generalized quasi-score
function is constructed on the basis of non-orthogonal estimating function invoking
the method of Durairajan (1992).
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1. Introduction

In this paper, we discuss a class of statistical models called generalized linear
models that is a natural generalization of classical linear models. Generalized linear
models are widely used as a standard tool in modern regression analysis. Successful
modeling based on generalized linear models relies on correctly specified model
components including the random part and the systematic part. In a classical
generalized linear model, the random part requires specification of a distribution from
the exponential family. This distribution assumption can be relaxed through the
specification of a variance function by Wedderburn's (1974) quasi-likelihood
approach. The systematic part of the model includes a linear predictor and a link
function. The linear predictor typically is a single index, i.e. a linear combination of
the predictors. A single index provides a dimension reduction step. The value of the
single index is related to the mean through the link function. Correct specification of
link and variance functions are key ingredients for successful statistical modeling of a
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generalized linear model with quasi-likelihood, in the simple situation where a single
linear predictor is indeed sufficient for modeling the relationship between covariates
and means. We note that consistency of the regression parameter estimates depends
on a correctly specified link function, while efficiency depends on a correctly
variance function, the importance of choosing a correct link function. However, the
price of misspecifying the variance function is not only loss of efficiency of the
regression parameter estimates but also incorrect confidence regions and test results.

Within the framework of stochastic processes, Godambe (1985) established
the optimality of certain estimating functions that are linear combinations of
orthogonal estimating functions and showed that these optimal estimating equations
are extensions of the quasi-likelihood equation for independent observations
developed by Wedderburn (1974). Thus, the theory of estimating function, in addition
to providing satiating equations has led to its extensions. The concept and technique
of quasi-likelihood estimation for independent observations have been extended by
Godambe and Thompson (1989) by incorporating possible knowledge of the
skewness, kurtosis and higher moments of the underlying distribution and the
extended quasi-score function has been developed by these authors. The generality of
the extended quasi-likelihood estimation of Godambe and Thompson (1989) is
derived from the theory of orthogonal estimating functions due to Godambe (1985).
Durairajan (1992) considered non-orthogonal 'basis’ of estimating functions and
obtained a closed form for the optimal estimating function among those spanned by
such a basis. In this paper, the approach of Durairajan is employed to develop
generalized quasi-likelihood estimation for a semi-parametric model with dependent
observations incorporating knowledge of skewness and kurtosis. William and
Durairajan (1999) have developed the quasi-likelihood estimation for a semi-
parametric model with a dependent structure by incorporating knowledge of skewness
and kurtosis. This is a generalization of a similar idea proposed for independent
observations by Godambe and Thompson (1989). The generalized quasi-score
function is constructed on the basis of non-orthogonal estimating functions invoking

the method of Durairajan (1992). The modeling issue is to identify the way in which
the variance increases with the mean. In practice it is sometimes the case, that
the relationship between the variance and the mean is (approximately),

McCullagh and Nelder, 1989, it is often possible to characterize the first two moments
of the response variable with unknown distribution of the form:

E (yi ) = H; (ﬂ)

var(y,)=var(e,)=¢E(y,)’ , 6=0.123
. ¢ 1s possibly unknown scale parameter or dispersion parameter
. V(*) is the variance has known functional form. The function

- that is, the variance is proportional to a power of the mean. Most common values of
@ are the values 0,1,2,3 which correspond to variance functions associated with

normal, Poisson, gamma, and inverse Gaussian distributions respectively. The Box-
Cox method can be used for investigating whether the variance is of the form in data —
and also for identifying a transformation of data onto a scale where the variance is
approximately constant. However, it is not
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necessary to work with data with constant variance provided that the variance
function can be identified. A method for doing this is presented in the following. We
calculate the variances and means for each group in data, i.e. for each combination of
sample.

However, it is not necessary to work with data with constant variance
provided that the variance function can be identified.
However, QL naturally comes into plays an important role in connection with
"Normal-Like" data where variance (y,)=¢V (1)=gu  (u)=1)
"Poisson-Like" data where variance (y;)=¢V (u)=¢u ( (u)=pu)
"Gamma-Like" data where variance (yj ): oV (u)=g u* (V (1) =p®

)
This means that if it can be justified that
.The variance is constant as a function of the mean, then one can work with the
Gaussian variance function-even if data are not normally distributed.
.The variance is proportional the squared mean, then one can work with the Gamma
variance function-even if data not gamma distributed.
. If ¢=1then variance equals the mean, then one can work with the Poisson

distributed. In Section 2, used non-orthogonal estimating functions. In Section 3 the
semi-parametric model under consideration is described and the generalized quasi-
score function is derived. Application of the new theoretical results will bee discussed
in Section 4.

2. Non-orthogonal and estimating functions

Let X={x} be an abstract sample space and I ={F} be a class of

distribution function on X . Let 8=(6,,--,6,,---,6, )l be a vector parameter with real
components defined on I such that{9j=Q. Let further h;,j=1--k,with
arbitrary k , be real function on X x Q such that

E. th, (x 0(F))|X, =0, F €3, 2.1)
where E. {‘ Xj} is the expectation under F , conditional on X, X; being a specified

partition (or technically a o -field generated by a partition) of X, j=1,---,k. For
simplicity we use the following notation:

Eg { ‘ X; }EE(i) {-}.
Note. Our theory does not require that the functionh;, j =1,---,k, satisfying (2.1) be
exhaustive. The choice of specific function h; would be determined by the underlying

statistical problem. This will be clear from the subsequent applications. To estimate &

on the basis of an observation x we consider the class of estimating functions
o={9,9=(9: 9, 9n)

where
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k
=>ha, (2:2)
=1

a,; being some real function on XxQ which is measurable with respect to the
partition X; in(2.1), for j=1,---,k. And r =1,---,m. An estimate of & based on the
estimating function g is obtained by solving the estimating equation

g (x,0)=0 for the observed x.

LetS(F)= ( IJ( )) be non-singular for every F €3 with

oy (F)=E;[n(x,0)h,(x,0)], i,j =1k, (2.3)
where E, () denotesEFHa(Xi qu)}. Also, let H(F)=(h,(F))be a mxk matrix

with
h,(F)=E,(0h,/06,), j=1--k i=1--m. (2.4)

Denotingh = (h,,---h, ) , the estimating function
g"=HS"h isoptimal. (2.5)

3. The generalized quasi-score function

To apply the theory of generalized linear models, we replace the abstract
sample space X={x} byR", Let x=(x,---,x,) denote the observations from a

process with sample spaceR" and f = {F} be a family of distributions on R" and
0=(6,,---,0,) be aparameter defined on f . LetX, =& (x,,---,X.,), i =1,2,---,n be

the o -fields on R" with X, being the trivial o -field.

B (%)= {0(F)} and E [x, -1 {0 (F )T = ¢ (F)V, {0 (F)} (3.1)
for allF €3" g,V,,i=1---,n, and ¢ are specified real function of the indicated
variables, 6=(6,,---,6,,---,6,) being as before the vector parameter with real

components defined on J’. The usual setup of generalized linear models (McCullagh
and Nelder, 1983) relates to ours as follows. In (3.1), the 'link' function, that is the
specified dependence of g on a linear combination ofé,,---,6_, is not assumed or

emphasized. Instead, we assumey to be any specified function
of6=(6,,---,6,,---,6,). Similarly, in contrast with the usual setup in (3.1), we do not
assume the function V, to depend on & only through ;. The dispersion parameter ¢
in (3.1) is allowed to depend on F , but is functionally independent of &. The case '¢
known' is the case where ¢ (F )=, , a known number, for all F €3'. This generality is

introduced for mathematical clarity and extended application, and of course our
results apply directly to the usual setup.. Now in addition to the relationships between
means and variances given by (3.1), further suppose that
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3 4

5T L and g, =E— M L 3 (3.2)
E; [(Xi —H )ZF E; [(Xi — K )ZF
where y, andy,,i=1,---,n, are assumed known and do not depend on X;,---, X ;.
Note that equation (3.1) prescribes that the conditional mean of x; given (xl,-‘-,xi_l)
depends on the values ofx;,---,x, ;. Apart from & but the conditional variance of x; .
Does not depend onx,,---, X, ,. Also, equation (3.2) prescribes that the skewness and
kurtosis of the conditional distribution of x, given (x,,---,x,_,) are known constants
not depending on the values of x,---, x,_,. Now, for the above semi-parametric model

we develop a generalized quasi-likelihood estimation and the associated notion of
generalized quasi-score function by considering (a basis of) non-orthogonal
estimating functions using the approach of Durairajan (1992).

7u =E;

If we assume that the series is partly autoregressive and partly moving
average, we obtain a quite general quasi-likelihood estimation technique.
Let x= (xl,---, xn)denote the observations from a process with sample space

R"and 7 = {F}be a family of distribution on R" and@=(6,,--,6,),4=(,.,,---. 4, )
be a parameter defined onz . LetX, = o{X,,---,X,,}, i =1---,nbe the & -field on R"
with X, being the trivial o -field. Where y,, andy,;, i =1,---,nare assumed known
and do not depend onx,,---,X;,,. Note that equation (3.1) prescribes that the
conditional mean of x, given(x,,---,x,_,). Depends on the values of x,,---, X, , apart
from & but the conditional variance of x; does not depend onx,,---,X; ;, equation
(3.2) prescribes that the skewness and kurtosis of the conditional distribution of x,
given (x,,---,x_,) are known constants not depending on the values ofx,,---,X,,.

Now, for the above semi-parametric model we develop a generalized quasi-likelihood
estimation and the associated notion of generalized quasi-score function by
considering (a basis of) non-orthogonal estimating function using the approach of
Durairajan (1992). We consider the following estimating function:

hy=h, =x —E(x;), h,, =h,=h?-var(x), i=1---,n (3.3)
and the o-fieldsX,;,i=1---,n, as defined at the beginning of the section
and X, ;=X;, j=L-,n.Fori=1--,n

Ei(hfi)zvar:gzﬁvi
where h;, j=1,..k, be real functions

3
Ei,n+1(h1ih2i): Vi (¢Vi )E

and
E.. (hnzn ): (72i + 2)¢2Vi2

fori#j
Eij (hlihlj)inj (hithj)inj (hZihZJ)zo , 1#]
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hence,

S S
Sinj(hihj)=£ 1 12]
821 822

where

S11 = Diag(~-~,¢Vi,---), 512 = 521 = Diag("'|71i(¢vi )2!)

and

Sy, = Diag(-+-, (v, +2)p2V2, )

now,
3 3
Diag(..,%(ﬁ_lvi-l,,,,] Diag[...,%qj " }
g1_ Vai t =71 L Vai t =74 (3.4)
Diag(...,_—yli2¢_zv_2J Diag[-~-,;z¢‘zvi‘2,~--]
Yo t2=14 Yai 2=
and
H :(Ej(a hj/a Hi)),
alul _ 8/,!“ _¢6V1 _¢ aVn
06, 06, = 06, 00,
H=|: : (3.5)

_ a/u| o alun _¢ aVl _¢ aVn
00, 06, a6, ' a0,

-1
mx2n SanZn

with some computation, we get the r™ element of g* = H
o' =(0;.9;..9;)

n n
g, = zalj hlj +za1,j+n h2j
j=1 j=1

n n
9, =za2j hlj +Za2,j+n h2j
i=1 j=1

hopa =mx1 as

n n
I :Zamj hy; +Zam,j+n h,;
j=1 j=1
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r

noo ou. 1o 7/1'\/'2 o7y
1y — g il i Vi j
29, J ”‘)(aeJ a3 Y

== {‘ﬁ_l Vi (Xj _/‘j)z —1-y; ¢ 2 s (Xj —,U,-)} (3.6)

n v oV. ) 1( )2 1 _1( )
+ ! ! oV WX —u. | -1-y. 2V 21X —u,
; 72] +2_]/le aer |: ] J ] 1j ] J J

suppose in addition, the dispersion parameter ¢ is to be estimated: Then, there is an
additional row in H which is equal to [0,...,0,-V,,...,V, . the last element

of g* = HS'h is then given by

1 (Xj_/”j)7u +1_(Xj—,u,-)2
754215 (pv, ) PV,

Ona=0;=0" D, 3.7)

!

if¢is known, the optimal estimating equations for #=(6,,...,6,) are given by
equation. (3.6) as g” =(gl*,...,g;) =0. If ¢ is unknown, then the estimating
equations which a re jointly optimal for(¢,4) are given by equation. (3.6) and (3.7)
asg’ :0,g; =0. In the literature (Wedderburn, 1974), the first term on the right

hand side of (3.6) is called the derivative of the quasi-likelihood function; we would
call it the quasi-score function. The quasi-likelihood equation is given by 'the quasi-
score function=0".

4. A discrete skeleton of a Poisson process

Let{Xr, r> 0} be a homogeneous Poisson process with parameter A
where X denotes the number of occurrences of a certain event upto time'r". Let
{XO =0, X/, X(5, ", Xrn} be a discrete skeleton of the process on which

observations are available, where {rl <--- <, } are any fixed but arbitrary points on
the time space. That is, the process {X r} IS observed at arbitrary time points on the
time space I, 15 -+, 1.

Let ,=0, Yy=0, Y;=X,;, i=1---,n.Then Y;-Y,_; follows Poisson
distribution with mean /1{ i—hiy } Here,
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——
Il
-!A
>
jab)
>
o

py =Yg+ AT T
Variance{Yj ‘Y Y }:

1
¢=1, V;(A)=Alr,-r,4

E[l, P Yo Y Al =ry ) and
EY; = YooYy =322 (- P2 (r 1)

Then, again in the notation of section 3,
1 1

7/.: , 7:
1) \/ﬂ(rj—rj_l) 2] ﬂrj—rj_li

The generalized quasi-score function = 0' of Equs. (3.6). reduce in this case to

O u. oV.
Pip oy =90

or 1 11T 5

Also,
- -1
NV = Vi
The generalized quasi score function is
« Y X
g ="t = (38)
A A-t,
i * . ~ Xip -
The equation § = 0 gives A= - It may be noted that the (usual) likelihood
n
function of the observables (th ,---,th) from a Poisson process is same as the

above g* given in equs. (4.5) and the solution A is same as the usual likelihood
estimate.
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