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Abstract. In this paper we first prove a common fixed point theorem in L-
fuzzy metric space. Then we prove fixed point theorems for various compatible
maps in L-fuzzy metric spaces.

1. Introduction and Preliminaries

The notion of fuzzy sets was introduced by Zadeh [23]. Various concepts of
fuzzy metric spaces were considered in [7, 8, 13, 14]. Many authors have studied
fixed theory in fuzzy metric spaces; see for example [3, 4, 11, 12, 16, 17]. In the
sequel, we shall adopt the usual terminology, notation and conventions of L-
fuzzy metric spaces introduced by Saadati et al. [19] which are a generalization
of fuzzy metric sapces [10] and intuitionistic fuzzy metric spaces [18, 20].

Definition 1.1. ([11]) Let L = (L,≤L) be a complete lattice, and U a non-
empty set called a universe. An L-fuzzy set A on U is defined as a mapping
A : U −→ L. For each u in U , A(u) represents the degree (in L) to which u
satisfies A.

Lemma 1.2. ([5, 6]) Consider the set L∗ and the operation ≤L∗ defined by:

L∗ = {(x1, x2) : (x1, x2) ∈ [0, 1]2 and x1 + x2 ≤ 1},
(x1, x2) ≤L∗ (y1, y2) ⇐⇒ x1 ≤ y1 and x2 ≥ y2, for every (x1, x2), (y1, y2) ∈ L∗.
Then (L∗,≤L∗) is a complete lattice .
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Classically, a triangular norm T on ([0, 1],≤) is defined as an increasing,
commutative, associative mapping T : [0, 1]2 → [0, 1] satisfying T (1, x) = x,
for all x ∈ [0, 1]. These definitions can be straightforwardly extended to any
lattice L = (L,≤L). Define first 0L = inf L and 1L = sup L.

Definition 1.3. A triangular norm (t-norm) on L is a mapping T : L2 → L
satisfying the following conditions:

(i) (∀x ∈ L)(T (x, 1L) = x); (boundary condition)
(ii) (∀(x, y) ∈ L2)(T (x, y) = T (y, x)); (commutativity)
(iii) (∀(x, y, z) ∈ L3)(T (x, T (y, z)) = T (T (x, y), z)); (associativity)
(iv) (∀(x, x′, y, y′) ∈ L4)(x ≤L x′ and y ≤L y′ ⇒ T (x, y) ≤L T (x′, y′)).

(monotonicity)

A t–norm T on L is said to be continuous if for any x, y ∈ L and any
sequences {xn} and {yn} which converge to x and y we have

lim
n

T (xn, yn) = T (x, y)

For example, T (x, y) = min(x, y) and T (x, y) = xy are two continuous t–
norms on [0, 1]. A t-norm can also be defined recursively as an (n + 1)-ary
operation (n ∈ N) by T 1 = T and

T n(x1, · · · , xn+1) = T (T n−1(x1, · · · , xn), xn+1)

for n ≥ 2 and xi ∈ L.

Definition 1.4. A negation on L is any decreasing mapping N : L → L
satisfying N (0L) = 1L and N (1L) = 0L . If N (N (x)) = x, for all x ∈ L, then
N is called an involutive negation.

Definition 1.5. The 3-tuple (X,M, T ) is said to be an L-fuzzy metric space
if X is an arbitrary (non-empty) set, T is a continuous t–norm on L and M
is an L-fuzzy set on X2× ]0, +∞[ satisfying the following conditions for every
x, y, z in X and t, s in ]0, +∞[:

(a) M(x, y, t) >L 0L;
(b) M(x, y, t) = 1L for all t > 0 if and only if x = y;
(c) M(x, y, t) = M(y, x, t);
(d) T (M(x, y, t),M(y, z, s)) ≤L M(x, z, t + s);
(e) M(x, y, ·) : ]0,∞[ → L is continuous.

Let (X,M, T ) be an L-fuzzy metric space. For t ∈ ]0, +∞[, we define the
open ball B(x, r, t) with center x ∈ X and radius r ∈ L \ {0L, 1L}, as

B(x, r, t) = {y ∈ X : M(x, y, t) >L N (r)}.
A subset A ⊆ X is called open if for each x ∈ A, there exist t > 0 and
r ∈ L\{0L, 1L} such that B(x, r, t) ⊆ A. Let τM denote the family of all open
subsets of X. Then τM is called the topology induced by the L-fuzzy metric
M.
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Example 1.6. ([21]) Let (X, d) be a metric space. Denote T (a, b) =
(a1b1, min(a2 + b2, 1)) for all a = (a1, a2) and b = (b1, b2) in L∗ and let M and
N be fuzzy sets on X2 × (0,∞) be defined as follows:

MM,N(x, y, t) = (M(x, y, t), N(x, y, t)) = (
t

t + d(x, y)
,

d(x, y)

t + d(x, y)
).

Then (X,MM,N , T ) is an intuitionistic fuzzy metric space.

Example 1.7. Let X = N. Define T (a, b) = (max(0, a1+b1−1), a2+b2−a2b2)
for all a = (a1, a2) and b = (b1, b2) in L∗, and let M(x, y, t) on X2 × (0,∞) be
defined as follows:

M(x, y, t) =

{
(x

y
, y−x

y
) if x ≤ y

( y
x
, x−y

x
) if y ≤ x.

for all x, y ∈ X and t > 0. Then (X,M, T ) is an L-fuzzy metric space.

Lemma 1.8. ([10]) Let (X,M, T ) be an L-fuzzy metric space. Then, M(x, y, t)
is nondecreasing with respect to t, for all x, y in X.

Definition 1.9. A sequence {xn}n∈� in an L-fuzzy metric space (X,M, T )
is called a Cauchy sequence, if for each ε ∈ L \ {0L} and t > 0, there exists
n0 ∈ N such that for all m ≥ n ≥ n0 (n ≥ m ≥ n0),

M(xm, xn, t) >L N (ε).

The sequence {xn}n∈� is said to be convergent to x ∈ X in the L-fuzzy metric

space (X,M, T ) (denoted by xn
M−→ x) if M(xn, x, t) = M(x, xn, t) → 1L

whenever n → +∞ for every t > 0. A L-fuzzy metric space is said to be
complete if and only if every Cauchy sequence is convergent.

Henceforth, we assume that T is a continuous t–norm on the lattice L such
that for every μ ∈ L \ {0L, 1L}, there is a λ ∈ L \ {0L, 1L} such that

T n−1(N (λ), ...,N (λ)) >L N (μ).

For more information see [19].

Definition 1.10. Let (X,M, T ) be an L-fuzzy metric space. M is said to be
continuous on X × X×]0,∞[ if

lim
n→∞

M(xn, yn, tn) = M(x, y, t)

whenever a sequence {(xn, yn, tn)} in X × X×]0,∞[ converges to a point
(x, y, t) ∈ X × X×]0,∞[ i.e., limn M(xn, x, t) = limn M(yn, y, t) = 1L and
limn M(x, y, tn) = M(x, y, t).

Lemma 1.11. Let (X,M, T ) be an L-fuzzy metric space. Then M is contin-
uous function on X ×X×]0,∞[.

Proof. The proof is the same as that for fuzzy spaces (see Proposition 1 of
[15]).
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Definition 1.12. Let A and S be mappings from an L-fuzzy metric space
(X,M, T ) into itself. Then the mappings are said to be weak compatible
if they commute at their coincidence point, that is, Ax = Sx implies that
ASx = SAx.

Definition 1.13. Let A and S be mappings from an L-fuzzy metric space
(X,M, T ) into itself. Then the mappings are said to be compatible if

lim
n→∞

M(ASxn, SAxn, t) = 1L, ∀t > 0

whenever {xn} is a sequence in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = x ∈ X.

Proposition 1.14. ([22]) If self-mappings A and S of an L-fuzzy metric space
(X,M, T ) are compatible, then they are weak compatible.

Lemma 1.15. ([1, 19]) Let (X,M, T ) be an L-fuzzy metric space. Define
Eλ,M : X2 −→ R

+ ∪ {0} by

Eλ,M(x, y) = inf{t > 0 : M(x, y, t) >L N (λ)}

for each λ ∈ L \ {0L, 1L} and x, y ∈ X. Then we have

(i) For any μ ∈ L \ {0L, 1L} there exists λ ∈ L \ {0L, 1L} such that

Eμ,M(x1, xn) ≤ Eλ,M(x1, x2) + Eλ,M(x2, x3) + · · · + Eλ,M(xn−1, xn)

for any x1, ..., xn ∈ X;

(ii) The sequence {xn}n∈� is convergent w.r.t. L-fuzzy metric M if and
only if Eλ,M(xn, x) → 0. Also the sequence {xn}n∈� is Cauchy w.r.t. L-fuzzy
metric M if and only if it is Cauchy with Eλ,M.

Lemma 1.16. Let (X,M, T ) be an L-fuzzy metric space. If

M(xn, xn+1, t) ≥L M(x0, x1, k
nt)

for some k > 1 and n ∈ N. Then {xn} is a Cauchy sequence.

Proof. For every λ ∈ L \ {0L, 1L} and xn ∈ X, we have

Eλ,M(xn+1, xn) = inf{t > 0 : M(xn+1, xn, t) >L N (λ)}
≤ inf{t > 0 : M(x0, x1, k

nt) >L N (λ)}

= inf{ t

kn
: M(x0, x1, t) >L N (λ)}

=
1

kn
inf{t > 0 : M(x0, x1, t) >L N (λ)}

=
1

kn
Eλ,M(x0, x1).
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From Lemma 1.15, for every μ ∈ L \ {0L, 1L} there exists λ ∈ L \ {0L, 1L},
such that

Eμ,M(xn, xm) ≤ Eλ,M(xn, xn+1) + Eλ,M(xn+1, xn+2) + · · · + Eλ,M(xm−1, xm)

≤ 1

kn
Eλ,M(x0, x1) +

1

kn+1
Eλ,M(x0, x1) + · · · + 1

km−1
Eλ,M(x0, x1)

= Eλ,M(x0, x1)
m−1∑
j=n

1

kj
−→ 0.

Hence sequence {xn} is a Cauchy sequence.

2. THE MAIN RESULTS

A class of implicit relation. Let Φ be the set of all continuous functions
φ : L −→ L, such that φ(t) > t for every t ∈ L \ {1L}.

Theorem 2.1. Let (X,M, T ) be a complete L-fuzzy metric space and assume
S, T, I, J : X −→ X be four mappings,such that TX ⊆ JX, SX ⊆ IX, (∗)
and

M(Tx, Sy, t)) ≥L φ(
min{M(Ix, Tx, kt),M(Jy, Sy, kt),M(Ix, Jy, kt)}
max{M(Ix, Sy, kt),M(Jy, Tx, kt)} )

for every x, y ∈ X, some k > 1 and T (X) or S(X) is a closed subset of X.
Suppose in addition that either

(i)T, I are compatible, I is continuous and S, J are weak compatible,
or

(ii)S, J are compatible, J is continuous and T, I are weak compatible.
Then I, J, T and S have a unique common fixed point.

Proof. Let x0 ∈ X be given . By (∗) one can choose a point x1 ∈ X such that
Tx0 = Jx1 = y1, and a point x2 ∈ X such that Sx1 = Tx2 = y2. Continuing
this way, we define by induction a sequence {xn} in X such that

Ix2n+2 = Sx2n+1 = y2n+2 n = 0, 1, 2, · · ·
Jx2n+1 = Tx2n = y2n+1 n = 0, 1, · · · .

For simplicity, we set

dn(t) = M(yn, yn+1, t), n = 0, 1, 2, · · ·
It follows from assume that for n = 0, 1, 2, · · · .

d2n+1(t)) = M(y2n+1, y2n+2, t) = M(Tx2n, Sx2n+1, t)

≥L φ(
min{M(Ix2n, Tx2n, kt),M(Jx2n+1, Sx2n+1, kt),M(Ix2n, Jx2n+1, kt)}
max{M(Ix2n, Sx2n+1, kt),M(Jx2n+1, Tx2n, kt)} )

≥L φ(min{d2n(kt), d2n+1(kt), d2n(kt)}, max{1L, 1L})

Now, if d2n+1(kt) <L d2n(kt), then

d2n+1(t) ≥L φ(d2n+1(kt)) >L d2n+1(kt).
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Hence d2n+1(t) >L d2n+1(kt), is a contradiction. Therefore d2n+1(t) ≥L

d2n(kt). That is M(y2n+1, y2n+2, t) ≥L M(y2n, y2n+1, kt). So

M(yn, yn+1, t) ≥L M(yn−1, yn, kt) ≥L · · · ≥L M(y0, y1, k
nt).

By Lemma 1.15 sequence {yn} is Cauchy sequence, then it is converges to
a ∈ X. That is

lim
n→∞

yn = a = lim
n→∞

Jx2n+1 = lim
n→∞

Sx2n+1 = lim
n→∞

Ix2n+2 = lim
n→∞

Tx2n.

Now suppose that (i) is satisfied. Then I2x2n −→ Ia and ITx2n −→ Ia, since
T and I are compatible, implies that TIx2n −→ Ia. Now we wish to show
that a is common fixed point of I, J, T and S.

(i) a is fixed point of I . Indeed, if Ia = a we have
M(T Ix2n, Sx2n+1, t) ≥L

φ(
min{M(I2x2n, T Ix2n, kt),M(Jx2n+1, Sx2n+1, kt),M(I2x2n, Jx2n+1, kt)}
max{M(I2x2n, Sx2n+1, kt),M(Jx2n+1, T Ix2n, kt)} ).

Letting n → ∞, (since Ia = a ) yields

M(Ia, a, t)) ≥L φ(
min{M(Ia, Ia, kt),M(a, a, kt),M(Ia, a, kt)}
max{M(Ia, a, kt),M(a, Ia, kt)} )

= φ(M(Ia, a, kt)) >L M(Ia, a, kt),

is a contradiction, hence Ia = a.
(ii) a is fixed point of T . Indeed,

M(Ta, Sx2n+1, t) ≥L φ( min{M(Ia, Ta, kt),M(Jx2n+1, Sx2n+1, kt),M(Ia, Jx2n+1, kt)}
max{M(Ia, Sx2n+1, kt),M(Jx2n+1, Ta, kt)} )

and letting n → ∞, if Ta = a gives

M(Ta, a, t)) ≥L φ(
min{M(Ia, T a, kt),M(a, a, kt), M(Ia, a, kt)}
max{M(Ia, a, kt),M(a, Ta, kt)} )

= φ(M(Ta, a, kt)) >L M(Ta, a, kt)

is a contradiction. Hence , Ta = a.

(iii) Since TX ⊆ JX for all x ∈ X, there is a point b ∈ X such that

Ta = a = Jb.

We show that b is coincidence point for J and S. Indeed, if Jb = Sb we have
M(Jb, Sb, t) = M(a, Sb, t) = M(Ta, Sb, t)

≥ φ(
min{M(Ia, T a, kt),M(Jb, Sb, kt),M(Ia, Jb, kt)}
max{M(Ia, Sb, kt),M(Jb, T a, kt)} ) >L M(Jb, Sb, kt),

is a contradiction. Thus Ta = Sb = Jb = a. Since J and S are weak compati-
ble, we deduce that

SJb = JSb =⇒ Sa = Ja.
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We show that Ta = Sa. Indeed, if Ta = Sa we have

M(Ta, Sa, t) ≥L φ(
min{M(Ia, Ta, kt),M(Ja, Sa, kt),M(Ia, Ja, kt)}
max{M(Ia, Sa, kt),M(Ja, Ta, kt)} ) >L M(Ta, Sa, kt),

is a contradiction, that is, Ta = Sa. Therefore

Sa = Ta = Ia = Ja = a.

Uniqueness, if b = a be another fixed point of I, J, T and S, then

M(Ta, Sb, t)) ≥L φ(
min{M(Ia, Ia, kt),M(a, a, kt),M(Ia, a, kt)}
max{M(Ia, a, kt),M(a, Ia, kt)} )

>L M(a, b, kt) = M(Ta, Sb, t).

is a contradiction.That is, a is unique common fixed point, and proof of the
theorem is complete.

A class of implicit relation. Let {Sα}α∈A and {Tβ}β∈B be the set of all
self-mappings of a complete L-fuzzy metric space (X,M, T ).

Theorem 2.2. Let I, J and {Tα}α∈A, {Sβ}β∈B be self-mappings of a complete
L-fuzzy metric space (X,M, T ) satisfying :

(i)there exist α0 ∈ A and β0 ∈ B such that Tα0(X) ⊆ J(X), Sβ0(X) ⊆ I(X)
and Tα0(X) or Sβ0(X) is a closed subset of X,

(ii)

M(Tα0x, Sβ0y, t)) ≥L φ(
min{M(Ix, Tα0x, kt),M(Jy, Sβ0y, kt),M(Ix, Jy, kt)}
max{M(Ix, Sβ0y, kt),M(Jy, Tα0x, kt)} )

for every x, y ∈ X, some k > 1 and φ ∈ Φ.
Suppose in addition that either

(a)Tα0, I are compatible, I is continuous and Sβ0 , J are weak compatible,
or

(b)Sβ0, J are compatible, J is continuous and Tα0, I are weak compatible.
Then I, J, Tα and Sβ have a unique common fixed point.

Proof. By Theorem 2.1 I, J, Sα0 and Tβ0 for some α0 ∈ A, β0 ∈ B have a
unique common fixed point in X. That is there exist a unique a ∈ X such
that I(a) = J(a) = Sα0(a) = Tβ0(a) = a. Let there exist λ ∈ B such that
λ = β0 and M(Tλa, a, t) < 1L then we have

M(a, Sλa, t) = M(Tα0a, Sλa, t)

≥L φ(
min{M(Ia, Tα0a, kt),M(Ja, Sλa, kt),M(Ia, Ja, kt)}
max{M(Ia, Sλa, kt),M(Ja, Tα0a, kt)} )

= φ(M(a, Sλa, kt)) >L M(a, Sλa, kt),

is a contradiction. Hence for every λ ∈ B we have Sλ(a) = a = I(a) = J(a).
Similarly for every γ ∈ A we get Tγ(a) = a. Therefore for every γ ∈ A, λ ∈ B
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we have

Tγ(a) = Sλ(a) = I(a) = J(a) = a.
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