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Abstract

Mathematical programs with equilibrium constrains (MPECs) in
which the constraints are defined by a parametric variational inequal-
ity are considered. Recently, nonlinear programming solvers have been
used to solve MPECs. Smoothing algorithms have been very successful.
In this note, a smoothing approach based on neural network function to
solve MPECs is proposed. The performance of the proposed smoothing
approach on as set of well-known problems is tested. A very useful and
efficient tool for practitioners to solve not only MPEC problems but
also more general class of MPECs is provided.

Keywords: Mathematical programs with equilibrium constraints, smoothing
approach, neural network function, online solvers.

1 Introduction

In this paper, we consider the following mathematical programs with equilib-
rium constraints:

min f(x, y)
s.t. x ∈ X

y ∈ S(x),
(1)

where f : Rn+m → R is a continuously differentiable function, and X is a
nonempty set in Rn, S(x) is the solution set of the following parametric vari-
ational inequality problem (PVI): find S(x) such that y ∈ S(x) if and only if
y ∈ C(x) and

〈v − y, F (x, y)〉 ≥ 0, for all v ∈ C(x), (2)
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where F : Rn+m → Rm is a continuously differentiable function, and set valued
mapping C is defined by

C(x) := {y ∈ Rm : gi(x, y) ≥ 0, i = 1, 2, · · · , l}, (3)

where gi : Rn+m → R for all i = 1, 2, . . . , l are twice continuously differentiable
and concave in the second variable. We note that if l = m and g(x, y) = y,
then the PVI is reduced to the following parametric nonlinear complementarity
problem

〈y, F (x, y)〉 = 0. (4)

One difficulty in dealing with MPECs problem is their combinatorial na-
ture and feasible region are nonconvex and nonsmooth due to the variational
inequality constraints, in general, there is no feasible point satisfying all in-
equality constraints strictly which implies the constraints qualification of the
nonlinear programming such as Mangasarian-Fromovitz constraint qualifica-
tion (MFCQ) is violated at any feasible point of a MPEC. Due to this, most
of the well-developed theory for nonlinear programming can not be applied
directly to MPEC problems.

Many practical problems in multilevel game, capacity enhancement in traf-
fic networks, engineering design, dynamic pricing in telecommunication net-
works, and economic equilibrium that are modeled using the MPEC formula-
tion, see [24], [26] . As a special case of MPEC, MPEC includes the so called
bilevel programming problem, for further material on bilevel program and its
applications; see [1], [8] and the references therein.

One of the powerful and effective approaches for solving general MPECs is
a class of so-called smoothing algorithms (e.g., [5], [9], [13], [14], [15], [18], [19],
[28]). Motivated by these methods, in this article we use the KKT conditions
for the variational inequality constraints, we reformulate MPEC problem as
a nonsmooth constrained optimization problem. Then by using the proposed
smoothing function, we transfer this nonsmooth optimization problem to a
smooth nonlinear programming problem. Our neural network approach pro-
vides a very useful and efficient tool for practitioners to solve not only MPEC
problems but also more general class of MPECs since we use online software.
Also, we compare our neural network approach with entropic smoothing ap-
proach based on entropic function. Numerical results are given for both prac-
tical and academic problems. Both of them enjoy favorable properties such as
nonsingularity of the Jacobian, and so on.

2 Equivalent reformulation of MPEC

The following assumptions are needed [9], [27]:
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A1 C(x) is nonempty and convex for all x ∈ A, where A is an open bounded
set in Rn such that A is containing X.

A2 C(x) is uniformly compact on A, i.e., there exists an open set B ⊆ Rn

such that for all x ∈ A, C(x) ⊆ B.

A3 F is uniformly strongly monotone with respect y, i.e., there exists a
constant μ > 0 such that

〈y1 − y2, F (x, y1) − F (x, y2)〉 ≥ μ||y1 − y2||2 for all y1, y2 ∈ C(x).

A4 X ⊆ Rn is nonempty and compact.

A5 At each x ∈ X and y ∈ S, the partial gradients ∇ygi(x, y) of the active
constrained are linearly independent.

Under the Assumptions (A1-A3), the authors [17] showed that there exists a
unique solution for the variational inequalities. The Assumption (A5) implies
that for each solution vector y ∈ S(x), the variational inequality problem (2)
can be rewritten as a system of Karush-Kuhn-Tucker (KKT) conditions [10],
i.e.,

F (x, y)−∇yg(x, y)T λ = 0,
g(x, y) ≥ 0, λ ≥ 0, λTg(x, y) = 0,

(5)

where λ ∈ Rl is a multiplier which is uniquely determined by Assumption A5.
Therefore, under Assumptions A1-A5, the variational inequality constraints in
(2) and its KKT conditions in (5) are equivalent, see [17]. MPEC problem (1)
can be written as a standard nonlinear programming:

min f(x, y)
s.t. x ∈ X,

F (x, y)−∇yg(x, y)T λ = 0,
g(x, y) ≥ 0, λ ≥ 0, λTg(x, y) = 0.

(6)

In general, Problem (6) does not satisfy any standard constraint qualifica-
tion(such as Mangasarian-Fromovitz constraint qualification). Moreover, the
complementarity constraints are very complicated and difficult to handle [30].

We consider the following nonsmooth reformulation which is used by Facchinei
et al. [9]

min f(x, y)
s.t. x ∈ X,

F (x, y) −∇yg(x, y)T λ = 0,
g(x, y) − z = 0,
min{z, λ} = 0,

(7)
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where z ∈ Rl and the ”min” operator is taken component wise to the vectors
z and λ. Problem (7) will be:

min f(x, y)
s.t. x ∈ X,
H(x, y, z, λ) = 0,

(8)

where H : Rn+m+l+l → Rm+l+l defined as

H(w) := H(x, y, z, λ) =

⎛
⎝ F (x, y) −∇yg(x, y)T λ

g(x, y) − z
min{z, λ}

⎞
⎠ . (9)

Note that MPEC Problem (1) is equivalent to (6), it is shown in [9] that
(x∗, y∗) is a global/local solution of the MPEC problem in (1) if and only if
there exists a vector (z∗, λ∗) such that (x∗, y∗, z∗, λ∗) is a global/local solution
of the problem in (6).

It is not easy to solve MPEC problem in (8) because its feasible set is
nonsmooth or even disconnected. The min function in (9) is nonsmooth (non-
differentiable) function and makes MPEC problem in (8) difficult to handle.

In the field of complementarity problems, several researchers have pro-
posed various smoothing functions to approximate the min function by a se-
quence of parameterized smooth (continuously differentiable) problems, and
to trace the smooth path which leads to solutions. For example, Kanzow [20]
used Chen-Harker-Kanzow-Smale (CHKS) smoothing function to solve com-
plementarity problem [20] and variational inequalities [21]. Facchinei, Jiang,
and Qi [9] applied Chen-Harker-Kanzow-Smale smoothing function to smooth
MPEC problem (9) and their numerical experiments indicate that the smooth
approach is very effective and efficient. Chen and Mangasarian [6], [7] pro-
posed a class of parametric smooth functions, called plus-smooth functions, to
approximate the min function which unified the smoothing functions studied
in [3], [4], [20], [31], [32]. Roughly speaking, their smoothing functions are
derived from double integrals of parameterized probability density functions.
Chen-Mangasarian smoothing function has been used to approximate linear
and convex inequalities, to solve complementarity problems [6], [7].

Fang and his collaborators used entropic regularization to solve various
problems in optimization [11], [12], [23] (for example, min–max problems and
semi–infinite programs). The entropic regularization function is defined as

φρ(a, b) = −1

ρ
ln{e−ρa + e−ρb}, (10)

where ρ > 0 is the real parameter and φρ : R2 → R. It is easy to see that
φρ(a, b) is a C∞ function and concave function for any ρ > 0.
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In this paper, we consider a subclass from Chen-Mangasarian smoothing
function to handle MPEC problems. This subclass is known as neural network
smoothing function which is defined as

φ(a, b, ε) = b − ε ln(1 + e
b−a

ε ). (11)

The following lemma summarizes the properties of the neural network. The
proof can be found in [2].

Lemma 1 Properties of φ(a, b, ε) where ε > 0

1. For any fixed ε > 0, the partial derivative satisfies

(0, 0) ≤ (
∂φ(a, b, ε)

∂a
,
∂φ(a, b, ε)

∂b
) ≤ (1, 1), (12)

and φ(a, b, ε) is k-times continuously differentiable for any positive inte-
ger k and for all (a, b)T ∈ R2.

2. For any fixed (a, b)T ∈ R2, φ(a, b, ε) is continuously differentiable, mono-
tonically decreasing and concave with respect to ε. In particular, for
ε1 ≥ ε2 ≥ 0

0 ≤ φ(a, b, ε2) − φ(a, b, ε1) ≤ κ(ε1 − ε2), (13)

where κ = max{κ1,
1√
2
}. Furthermore, φ(a, b, ε) → −∞ as ε → ∞.

3. The limit

lim
ε↓0

(
∂φ(a, b, ε)

∂a
,
∂φ(a, b, ε)

∂b
) exists for any fixed (a, b)T ∈ R2. (14)

The smooth reformulation of Problem (8) will be

min f(x, y)
s.t. x ∈ X,
Hε(x, y, z, λ) = 0,

(15)

where Hε : Rn+m+l+l → Rm+l+l defined as

Hε(w) := Hε(x, y, z, λ) =

⎛
⎝ F (x, y) −∇yg(x, y)T λ

g(x, y) − z
Φε(z, λ)

⎞
⎠ (16)

where Φε(z, λ) := (Φε(z1, λ1), · · · , Φε(zl, λl)
T ∈ Rl.

Since Problem (15) is a regular nonlinear programming, we can solve it
by online software. It is known that these software solvers converge to the
local minimizers unless certain assumptions need to be imposed on f and X
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such as convexity. Since we do not have such assumptions, we expect a local
convergence. We minimize the constraint violations (a feasible solution for
(15) is not a feasible solution for the original constraints in (8). Indeed, several
constrained optimization softwares such as SNOPT [16] try to minimize the
constraint violations. We minimize the constraint violations between (15) and
(8) by taking ε → 0.

As a consequence of the above lemma, one can prove both Φε and Hε(x, y, z, λ)
are regular and locally Lipschtiz. In a recent paper, Ralph and Wright [29]
have established certain regularity condition under which some of the refor-
mulations (e.g., the product and penalty reformulations) can generate an local
optimal solution to the original MPEC.
Remarks

Clearly by Part (1) of Lemma 1, Hε(x, y, z, λ) is continuously differentiable
for any fixed ε > 0 and by Part (2) of Lemma 1, Hε(x, y, z, λ) bounded by the
smooth parameter ε.

The Jacobian of Hε(x, y, z, λ) is given by

∇Hε(w) := ∇Hε(x, y, z, λ) =

⎛
⎝ Q 0 −∇yg(x, y)T

∇yg(x, y) −I 0
0 D1 D2

⎞
⎠ (17)

where
Q := ∇yF (x, y) − ∑

i∈I λi∇2
ygi(x, y),

D1 := diag(∂φε(z1,λ1)
∂z1

, · · · , ∂φε(zl,λl)
∂zl

)

D2 := diag(∂φε(z1,λ1)
∂λ1

, · · · , ∂φε(zl,λl)
∂λl

)

(18)

and I is the l-dimensional identity matrix. Part (3) of Lemma 1 provides the
limiting behavior of the Jacobian ∇Hε(x, y, z, λ) as smooth parameter ε → 0.
This is useful for designing locally fast convergent algorithms.

The following theorem shows the nonsingularity of ∇Hε(x, y, z, λ) which plays
a very important rule in proving the convergence of the algorithm.

Theorem 1 Given any ε �= 0 and (x, y, z, λ) ∈ Ωε where Ωε ⊂ Rn+m+2l is the
feasible set of problem (15), the Jacobian of Hε with respect to the variables
(y, z, λ) is nonsingular.

Proof. Let us show the nonsingularity of ∇Hε in (17). Since F (., x) is strongly
monotone, ∇yF (x, .) is positive definite. The Hessian matrices ∇2

y gi(., x) are
negative semidefinite for i ∈ I because all functions gi(x, .) are concave. Thus,
Q in (18) is positive definite. Using (12) for all i = 1, 2, · · · , l, the diagonal
matrices D1 and D2 in (18) are positive definite. To prove the nonsingularity
of ∇Hε, suppose that ∇Hεw = 0 for some vector w = (w(1), w(2), w(3)) ∈
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Rm ×Rl ×Rl. It is easy to show w is a zero vector. Thus, ∇Hε is nonsingular.
�

Now we give the following examples to illustrate the formulation with neural
network smoothing.
Example 1.

The following example is a bilevel program. Since the lower level program
is convex, it is equivalent to its optimality condition, which can be formulated
as a variational inequality problem.

f(x, y) = 1
2
[(y1 − 3)2 + (y2 − 4)2 + (y3 − 1)2]; X = [0, 10],

F (x, y) =

⎛
⎜⎜⎜⎜⎜⎜⎝

(1 + 0.2x)y1 − (3 + 1.333x) − 0.333y3 + 2y1y4 − y5

(1 + 0.1x)y2 − x + y3 + 2y2y4 − y6

0.333y1 − y2 + 1 − 0.1x
9 + 0.1x − y2

1 − y2
2

y1

y2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

g1(x, y) = y3, g2(x, y) = y4, g3(x, y) = y5, g4(x, y) = y6.

The corresponding problem in (6) can be derived as

min 1
2
((y1 − 3)2 + (y2 − 4)2)

s.t. 0 ≤ x1 ≤ 10,
(1 + 0.2x)y1 − (3 + 1.333x) − 0.333y3 + 2y1y4 − y5 = 0,
(1 + 0.1x)y2 − x + y3 + 2y2y4 − y6 = 0, 0.333y1 − y2 + 1 − 0.1x − λ1 = 0,
9 + 0.1x − y2

1 − y2
2 − λ2 = 0, y1 − λ3 = 0, y2 − λ4 = 0,

y3 ≥ 0, y4 ≥ 0, y5 ≥ 0, y6 ≥ 0, λ1, λ2, λ3, λ4 ≥ 0,
λ1y3 = 0, λ2y4 = 0, λ3y5 = 0, λ4y6 = 0

and the problem in (15) can be derived as

min 1
2
((y1 − 3)2 + (y2 − 4)2)

s.t. 0 ≤ x1 ≤ 10
(1 + 0.2x)y1 − (3 + 1.333x) − 0.333y3 + 2y1y4 − y5 = 0,
(1 + 0.1x)y2 − x + y3 + 2y2y4 − y6 = 0,
0.333y1 − y2 + 1 − 0.1x − λ1 = 0,
9 + 0.1x − y2

1 − y2
2 − λ2 = 0

y1 − λ3 = 0, y2 − λ4 = 0, y3 − z1 = 0,
y4 − z2 = 0, y5 − z3 = 0, y6 − z4 = 0,
λ1 − ε ∗ ln(1 + e(λ1−z1)/ε) = 0, λ2 − ε ∗ ln(1 + e(λ2−z2)/ε) = 0,
λ3 − ε ∗ ln(1 + e(λ3−z3)/ε) = 0, λ4 − ε ∗ ln(1 + e(λ4−z4)/ε) = 0.

Example 2. This example has been used in [9].

f(x, y) = 2x1 + 2x2 − 3y1 − 3y2 − 60 + 100 [max{0, x1 + x2 + y1 − 2y2 − 40}]2 ;
X = [0, 50] × [0, 50],
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F (x, y) =

(
2y1 − 2x1 + 40
2y2 − 2x2 + 40

)

g1(x, y) = y1 + 10, g2(x, y) = −y1 + 20, g3(x, y) = y2 + 10,
g4(x, y) = −y2 + 20, g5(x, y) = x1 − 2y1 − 10, g6(x, y) = x2 − 2y2 − 10.

The corresponding problem in (6) can be derived as

min 2x1 + 2x2 − 3y1 − 3y2 − 60 + 100 [max{0, x1 + x2 + y1 − 2y2 − 40}]2
s.t. 0 ≤ x1, x2 ≤ 50,
y1 + 10 ≥ 0, − y1 + 20 ≥ 0, y2 + 10 ≥ 0,
−y2 + 20 ≥ 0, x1 − 2y1 − 10 ≥ 0, x2 − 2y2 − 10 ≥ 0,
2y1 − 2x1 + 40 − λ1 + λ2 + 2λ5 = 0, 2y2 − 2x2 + 40 − λ3 + λ4 + 2λ6 = 0,
λ1, λ2, λ3, λ4, λ5, λ6 ≥ 0, λ1(y1 + 10) = 0, λ2(−y2 + 20) = 0, λ3(y2 + 10) = 0,
λ4(−y2 + 20) = 0, λ5(x1 − 2y1 − 10) = 0, λ6(x2 − 2y2 − 10) = 0

and the problem in (15) can be derived as

min 2x1 + 2x2 − 3y1 − 3y2 − 60 + 100 [max{0, x1 + x2 + y1 − 2y2 − 40}]2
s.t. 0 ≤ x1, x2 ≤ 50,
2y1 − 2x1 + 40 − λ1 + λ2 + 2λ5 = 0, 2y2 − 2x2 + 40 − λ3 + λ4 + 2λ6 = 0,
y1 + 10 − z1 = 0, − y1 + 20 − z2 = 0, y2 + 10 − z3 = 0,
−y2 + 20 − z4 = 0, x1 − 2y1 − 10 − z5 = 0, x2 − 2y2 − 10 − z6 = 0,
λ1 − ε ∗ ln(1 + e(λ1−z1)/ε) = 0, λ2 − ε ∗ ln(1 + e(λ2−z2)/ε) = 0,
λ3 − ε ∗ ln(1 + e(λ3−z3)/ε) = 0, λ4 − ε ∗ ln(1 + e(λ4−z4)/ε) = 0,
λ5 − ε ∗ ln(1 + e(λ5−z5)/ε) = 0, λ6 − ε ∗ ln(1 + e(λ6−z6)/ε) = 0.

3 Numerical results with SNOPT

Our main goal in this paper is to apply our proposed approach to MPEC
problems by using online available software. We show the performance of the
neural network approach on a set of well-known problems. We used AMPL
as our modeling language and took advantage of the web-based submission
interface available on the new NEOS 5.0 server.

We use the set of test problems which have been used by the authors in
[9], [25], [27]. We compare our neural network with the entropic approach.

The user must set a parameter value prior to the execution of the solver.
We used a standard value of 1e−4, adjusting it as necessary to produce usable
results.

We will refer to entropic regularization approach using smoothing function
in (10) as ERA . Our neural network smoothing function will be abbreviated
NNA (neural network approach using neural network function in (11)).

In the following table, the first column numbers the test problems. Col-
umn two shows the starting points used to test the various problems, while
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columns three and six give the best objective function values f ∗ reported by
the solver, with smaller values being better solutions. Columns four and seven
give the optimum solutions which correspond to the objective functions. Fi-
nally, columns five and eight give the number of iterations each approach takes
to converge to the solution, and column 9 reports the value of the parameter
that was used by our proposed functions to obtain a result. SNOPT 6.2 solver
is one of the best-known SQP solvers available. SNOPT employs a sparse
sequential quadratic programming algorithm with Quasi-Newton approxima-
tions. In particular, SNOPT allows the nonlinear constraints to be violated
(if necessary) and minimizes the sum of such violations. We used the default
parameter settings for the SNOPT solver.

For problems 1 − 5, both approaches produced comparable answers and
provided comparable total iterations over all five problems. Also, for all these
problems SNOPT produced the following error when using the NNA approach
with an ε value which is too small: “SNOPT 6.2 − 2: Numerical error: the
general constraints cannot be satisfied accurately”.

In problem 6, both approaches converged to the same result. In problem
7, both ERA and NNA had trouble converging to the best reported value. In
fact, the parameter ρ for the ERA approach had to be reduced to 1.0 in order
to produce a usable result. The NNA approach converged to the best value in
only one of the two cases while the ERA approach could not converge to the
best result from either starting point. Finally, when using the NNA approach
from the (50, 50) starting point, a value of ρ which was too small produced the
following error: “SNOPT 6.2 − 2: The current point cannot be improved.”

In problem 8, the values that were obtained corresponded to the optimum
solutions posted on the MacMPEC website [22]. We are unsure as to the cause
of this discrepancy at this point. In terms of iterations, both ERA and the
proposed NNA approach performed the most efficiently, with both of them
performing almost identically in terms of iterations.

Problem 9 caused more problems for the ERA approach, with three of the
five points tested failing to reach the optimum solution. The NNA approach
proposed in this paper fared the best, converging to the optimum solution from
four out of five of the tested starting points.

In problem 10, both the ERA and NNA converged to the optimum val-
ues at every starting point while the remaining two could not converge to the
optimum value from any starting point. The approach did reach the opti-
mum objective. Both of the proposed approaches performed efficiently on this
problem, except when using the zero vector as a starting point for the NNA
approach. In this case the smoothing function is equal to −ε ln(2) and, exces-
sive iterations are spent to minimize the violation of the equality constraint.
When (0.0001, 0.0001, 0.0001, 0.0001) was used instead of (0, 0, 0, 0) with the
NNA approach, the number of iterations dropped dramatically from 141 to 53,
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while still producing the same result. Finally, problem 11 saw all approaches
reaching the optimum solution from all starting points.



Smoothing mathematical programs 1953

ERA NNA
No. Start f∗ x∗ It. f∗ x∗ It. ρ
1 0 3.2151 4.0780 25 3.2151 4.0780 26 1e-2

10 3.2151 4.0780 24 3.2151 4.0780 29 1e-2
2 0 3.4494 5.1536 23 3.4494 5.1536 29 1e-2

10 3.4494 5.1536 18 3.4494 5.1536 25 1e-2
3 0 4.6043 2.3894 21 4.6041 2.3895 26 1e-2

10 4.6043 2.3894 19 4.6043 2.3894 19 1e-2
4 0 6.5927 1.3731 17 6.5927 1.3731 17 1e-2

10 6.5927 1.3731 19 6.5927 1.3731 19 1e-2
5 (0,0) -0.99999 (0.5005,0.5005) 15 -0.99999 (0.5005,0.5005) 13 1e-4

(2,2) -0.99999 (0.5005,0.5005) 20 -0.99999 (0.5005,0.5005) 17 1e-4
6 0 -3266.6667 93.3333 5 -3266.6667 93.3333 5 1e-4

100 -3266.6667 93.3333 6 -3266.6667 93.3333 6 1e-4
200 -3266.6667 93.3333 6 -3266.6667 93.3333 6 1e-4

7 (25,25) 5.1676 (24.9757,30.1322) 34 4.9995 (25,30) 33 1e-4
(50,50) 5.1676 (24.9757,30.1322) 37 5.1676 (24.9757,30.1322) 39 1e-1

8.1 0 -230.8232 47.036 19 -230.8232 47.036 19 1e-1
150 -230.8232 47.036 21 -230.8232 47.036 21 1e-1

8.2 0 -129.9119 34.9942 18 -129.9119 34.9942 18 1e-1
150 -129.9119 34.9942 21 -129.9119 34.9942 21 1e-1

8.3 0 -36.9331 18.1332 17 -36.9331 18.1332 17 1e-1
150 -36.9331 18.1332 22 -36.9331 18.1332 22 1e-1

8.4 0 -7.06178 7.55197 19 -7.06178 7.55197 19 1e-1
150 -7.06178 7.55197 24 -7.06178 7.55197 24 1e-1

8.5 0 -0.1790 1.0663 19 -0.1790 1.0663 19 1e-1
150 -0.1790 1.0663 23 -0.1790 1.0663 23 1e-1

8.6 0 -354.7021 50 17 -354.7021 50 17 1e-1
50 -354.7021 50 14 -354.7021 50 14 1e-1

8.7 0 -241.4420 40 17 -241.4420 40 17 1e-1
40 -241.4420 40 14 -241.4420 40 14 1e-1

8.8 0 -90.7491 25.2584 20 -90.7491 25.2584 20 1e-1
30 -90.7491 25.2584 19 -90.7491 25.2584 19 1e-1

8.9 0 -25.7478 13.2974 21 -25.7478 13.2974 21 1e-1
25 -25.7478 13.2974 20 -25.7478 13.2974 20 1e-1

8.10 0 -6.1176 6.3655 20 -6.1176 6.3655 20 1e-1
20 -6.1176 6.3655 19 -6.1176 6.3655 19 1e-1

9 (0,0) 5.97398e-11 (9.0962,5.9038) 33 1.5705e-12 (5,9) 15 1e-4
(5,5) 1.1987e-12 (5,9) 11 4.1063e-13 (5,9) 11 1e-4
(10,10) 4.4995e-11 (9.0977,5.9023) 34 4.4995e-11 (9.0977,5.9023) 34 1e-2
(10,0) 8.3173e-11 (9.0938,5.9062) 33 4.1691e-13 (5,9) 11 1e-4
(0,10) 6.1944e-12 (5,9) 19 6.1927e-12 (5,9) 18 1e-4

10 (0,0,0,0) -6600.00 (7,3,12,18) 139 -6600.00 (7,3,12,18) 141 1e-1
(0,5,0,20) -6600.00 (7,3,12,18) 56 -6600.00 (7,3,12,18) 59 1e-1
(5,0,15,10) -6600.00 (7,3,12,18) 72 -6600.00 (7,3,12,18) 54 1e-1
(5,5,15,15) -6600.00 (7,3,12,18) 60 -6600.00 (7,3,12,18) 58 1e-1
(10,5,15,10) -6600.00 (7,3,12,18) 50 -6600.00 (7,3,12,18) 49 1e-1

11 (0,0) -12.6787 (0,2) 21 -12.6787 (0,2) 21 1e-1
(0,2) -12.6787 (0,2) 21 -12.6787 (0,2) 21 1e-1
(2,0) -12.6787 (0,2) 27 -12.6787 (0,2) 28 1e-1

Table 1: The NNA with ERA using SNOPT
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