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Abstract

The objective of this paper is to solve the equation of motion of
semilunar heart valve vibrations. The vibrations of the closed semilu-
nar valves were modeled with a Caputo fractional derivative of order
α. With the help of Laplace transformation, closed-form solution is ob-
tained for the equation of motion in terms of Mittag- Leffler function.
We obtained the analytical solution for the nonlinear fractional differ-
ential equation using Adomian decomposition method. The simplicity
of these solutions makes them ideal for testing the accuracy of numeri-
cal methods. These solutions can be of some interest for a better fit of
experimental data.
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1 Introduction

The heart valves are mechanical devices that permit the flow of blood
in one direction only. Four sets of valves are of importance to the normal
functioning of the heart. Two of these, the atrioventricular valves, guard the
opening between the atria and the ventricles. The other two heart valves, the
semilunar valves, are located where the pulmonary artery and the aorta arise
from right and left ventricles, respectively [18].

The semilunar valves consist of half-moon shaped flaps growing out from
the lining of the pulmonary artery and aorta. When these valves are closed,
blood fills the spaces between the flaps and the vessel wall. Each flap then
looks like a tiny, filled bucket. Inflowing blood smoothes the flaps against
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the blood vessel walls, collapsing the buckets and thereby opening the valves.
Closure of the semilunar valves simultaneously prevents back flow and ensures
forward flow of blood in places where there would otherwise be considerable
back flow [18].

Wiggers (1915) suggested that there is silent approximation of the semilu-
nar valves and that after vibrations of the closed valve and the column of
blood cause the second heart sound. Stein (1981) supported the theory of
silent valve closure and suggested that the valvular vibrations are a sufficient
cause for production of the second heart sound [9].

Following coaption of the valve leaflets, a pressure difference is developed
across the closed valve during the isovolmic relaxation phase, and the leaflets
distend slightly toward the ventricle. This causes a pressure reduction within
the blood. Subsequent recoil of the valve compresses the blood in the aorta.
Vibrations of the leaflets gradually diminishes due damping. The leaflet vibra-
tion produces transient pressure gradient in the surrounding blood medium,
which subsequently causes vibration of contiguous structures, which are trans-
mitted to the chest wall where they are recognized as audible heart sounds
[9].

Blick [2] modeled the aortic valve as a circular membrane of radius a. In
this model the aortic valve is assumed to be an elastic, homogeneous membrane
secured around a circular edge and undergoing a parabolic displacement. The
valve close due to the intraventricular pressure falling below that of the aortic
pressure. The force that drives the closed valve to vibrate is the pressure
difference Δp that occurs across the valve. The differential equation of motion
for forced and damped vibrations of a membrane at any time t, with one-
degree-of-freedom equation was expressed as [2]:

D2
t x(t) +

c

m
Dtx(t) +

k

m
x(t) = f(t), (1)

where m, c and k represent the effective mass of vibration, the damping force
coefficient, and stiffness factor, respectively. f(t) = Δp πa2

m
is an external force.

Gotolov [6] introduced the nonlinear model of semilunar heart valve vibrations
as

D2
t x(t) +

c

m
Dtx(t) +

k

m
x(t) +

λ

m
x3(t) = f(t), (2)

where λ represents the nonlinear parameter. The fractional derivative ap-
proach provides a powerful tool for modeling systems with damping materials.
The model based on fractional derivatives has been shown to be one of the
most effective approaches [16, 17]. If the fractional derivative model is used
to represent the damping characteristic, the equations of motion (1) and (2)
assume the form:

D2
t x(t) +

c

m
Dα

t x(t) +
k

m
x(t) = f(t), (3)
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D2
t x(t) +

c

m
Dα

t x(t) +
k

m
x(t) +

λ

m
x3(t) = f(t), (4)

The operator Dt of the conventional model was replaced by Dα
t . There are

several definitions of derivative of fractional order. The fractional operator Dα
t

based on Riemann-Liouville integral is defined as [7,13]:

Dα
t x(t) =

1

Γ(n − α)

dn

dtn

∫ t

0

x(u)

(t − u)α−n+1
du, n − 1 < α < n

where n is an integer number and Γ is the gamma function. Also the Caputo’s
definition can be written as[7, 13]:

Dα
t x(t) =

1

Γ(n − α)

∫ t

0

x(n)(u)

(t − u)α−n+1
du, n − 1 < α < n.

The main objective of the present paper is the mathematical study and
the using of an easy method to obtain closed-form solution for the equation of
motion for general value of α for linear case and also to obtain approximate
solution to the nonlinear fractional calculus model of the semilunar heart valve
vibrations.

2 Adomian decomposition method

The decomposition method does not change the problem into a convenient
one for use of linear theory. It therefore provides more realistic solutions. It
provides series solutions which generally converge very rapidly in real physical
problems. When the solutions are computed numerically, the rapid conver-
gence is obvious. The advantage of the decomposition method relies on the
fact that it provides an easily computable scheme and an efficient algorithm.
It is well known that the decomposition method decompose the linear term
u(x, t) into an infinite sum of components un(x, t) defined by [19]

u(x, t) =
∞∑

n=0

un(x, t).

Moreover, the decomposition method identifies the nonlinear term N(u(x, t))
by decomposition series

N(u(x, t)) =
∞∑

n=0

An,

where An are the so-called Adomian polynomials. These polynomials can
be calculated for all forms of nonlinearity according to specific algorithms
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constructed and given in . In this specific nonlinearity, we use the general
form of formula for An Adomian polynomials as [19]

An =
1

n!

dn

dλn

[
N(

∞∑
n=0

λnun)

]
λ=0

, n ≥ 0.

This formula is easy to set computer code to get as many polynomials as we
need in the calculation of the numerical as well as explicit solutions. The
first few polynomials in our nonlinearity N(u) = u3 are given by A0 = u3

0,
A1 = 3u2

0u1, A2 = 3u2
0u2 + 3u2

1u0, and so on, the rest of the polynomials can
be constructed in a similar manner.

3 Analysis

One of the most efficient and elegant methods to solve Eq(2) is by means
of the Laplace transform. The formula for Laplace Transform of Riemann-
Liouville fractional derivative is:∫ ∞

0
e−st Dα

t x(t)dt = sαx(s) −
n−1∑
j=0

sjDα−j−1
t x(0), (n − 1 < α < n).

where x(s) is the Laplace transform of x(t). The Laplace transform of the
Riemann-Liouville fractional derivatives is well known. However, its practical
applicability is limited by the absence of the physical interpretation of the limit
values of fractional derivatives at t = 0. The formula for Laplace Transform
of Caputo fractional derivative is

∫ ∞

0
e−st Dα

t x(t)dt = sαx(s) −
n−1∑
j=0

sα−j−1Dj
tx(0), (n − 1 < α < n).

Since this formula for the Laplace transform of the Caputo derivative involves
the values of the function f(t) and its derivatives at t = 0, for which a certain
physical interpretation exists, we can expect that it can be useful for solving
applied problems leading to linear fractional differential equations with con-
stant coefficients with accompanying initial conditions in traditional form [13,
p. 106].

Applying the Laplace transform to equation(3) we obtain:

x(s) =
f(s)

s2 + c
m

sα + k
m

, (5)

where x(s) and f(s) are the Laplace transform of x(t) and f(t) respectively.
Eq (5) can be written in the form:

x(s) =
∞∑

j=0

(−1)j( k
m

)js−α(j+1)f(s)

(s2−α + c
m

)j+1
. (6)
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Using the convolution theorem, the inversion of Eq(6) takes the form:

x(t) =
∫ t

0
G(t − u)f (u)du, (7)

where

G(t) =
∞∑

j=0

(−1)j

j!
(
k

m
)j t2j+1Ej

2−α,2+αj(−
c

m
t2−α), (8)

and Eα,β is the two-parameter function of the Mittag-Leffler type defined by
the series expansion[13]:

Eα,β(z) =
∞∑

j=0

zj

Γ(αj + β)
.

Equation(8) can be written in the form:

G(t) =
∞∑

j=0

(−1)j(
k

m
)j

∞∑
i=0

(i + j)!

j! i!
(−1)i(

c

m
)i t2j+2i−αi+1

Γ(2j + 2i − αi + 2)
, (9)

Measurements during catheterization of the instantaneous pressure gradient
across the semilunar valve during diastole indicate that, to the first approx-
imation, the pressure gradient increases linearly with time until a time t1 is
reached following which the pressure gradient remains essentially constant[2].
The deflection of the centerline for time t < t1 can be expressed as

x(t) =
πa2A

m

∞∑
j=0

(−1)j(
k

m
)j

∞∑
i=0

(i + j)!

j! i!
(−1)i(

c

m
)i t2j+2i−αi+3

Γ(2j + 2i − αi + 4)
, (10)

where A = dΔp
dt

and the deflection of the centerline for t > t1 is given by

x(t) =
πa2B

m

∞∑
j=0

(−1)j(
k

m
)j

∞∑
i=0

(i + j)!

j! i!
(−1)i(

c

m
)i t2j+2i−αi+2

Γ(2j + 2i − αi + 3)
. (11)

where B = 150 is the constant value of Δp at t > t1 and t1 = 0.0175 see[9].
The velocity of the centerline deflection of the membrane can be obtained by

differentiation of equations (8) and (9). Instead of approximating the pressure
difference occurring across the valve by a ramp function, Mazudard [8] used
an exponential function Δp = C(1 − e−b t) as a better approximation to the
physiological pressure gradient. The deflection of the centerline in this case
can be expressed as

x(t) =
πa2C

m

∞∑
j=0

(−1)j(
k

m
)j

∞∑
i=0

(i + j)!

j! i!
(−1)i(

c

m
)i F (t)

Γ(2j + 2i − αi + 2)
, (12)
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where

F (t) = t−iα(−b)−2(i+j)(
t2(−b t)2(i+j)

2j + 2i − αi + 2
+

e−t b(−t b)iα(Γ(2j + 2i − αi + 2) + Γ(2j + 2i − αi + 2,−t b))

b2
).

The power series in equations (10), (11) and (12) embodies the deflection
of the centerline of the heart valve.

The value α = 1
2

was adopted in this section because it has been shown
that it describes that it describes the frequency dependence of the damping
materials quite satisfactorily [8]. The equation of motion (3) can be written in
the form

D2
t x(t) + 2ηω

3
2 D

1
2
t x(t) + ω2x(t) = f(t),

where 2ηω
3
2 = c

m
and ω2 = k

m
. The coefficient η is the damping ratio of an

oscillator with fractional damping of order 1
2

and ω is the natural frequency.
The exponent 3

2
was introduced for consistency of dimensions.

4 Nonlinear fractional calculus model

Equation (4) can be written in the form:

D2
t x(t) = f(t) − c

m
Dα

t x(t) − k

m
x(t) − λ

m
x3(t). (13)

We adopt Adomian decomposition method for solving equation (13). Applying
the inverse operator L−1 on both sides of (13), we obtain

x(t) = x(0) + t x′(0) + L−1f(t) − L−1

(
c

m
Dα

t x(t) +
k

m
x(t) +

λ

m
x3(t)

)
. (14)

We assume that x(t) = x0(t) + x1(t) + x2(t) + ......, to be the solution of
Eq(14).When f(t) = A, using Adomian decomposition method we get

x0(t) =
A t2

2
(15)

xn+1(t) = −L−1

(
c

m
Dα

t xn(t) +
k

m
xn(t) +

λ

m

∞∑
n=0

An

)
. (16)

In view of (15), (16) we get

x1(t) = − cAt4−α

mΓ(5 − α)
− kAt4

mΓ(5)
− 90λA3t8

Γ(9)
,
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and

x2(t) =
Ak2t6

720m2
+

A3kt10λ

2688m
+

3A5t14λ2

326144
+

Ac2 t6−2α

m2Γ(7 − 2α)
+

2Ac t6−α

m2Γ(7 − α)

+
90A3c t10−αλ

mΓ(11 − α)
+

3A3c t10−αλ

4m(90 − 19α + α2)Γ(5 − α)
,

other components are determined similarly.
The input pressure gradient was taken to be a ramp function where Δp

increased 8570 mm Hg/sec for time less than t1 = 0.0175 sec. The value of Δp
was constant at 150 mm Hg per sec for time equal to or greater than 0.0175.
The effective stiffness factor for the membrane was assumed to be equal to
the measured static value of k which was 6.8× 106 dyn/cm,the damping force
factor D = 2.8 × 103 dyn sec cm−2 and the effective mass m = 195 g[9].

5 Results

The theoretical curve for the membrane vibration is plotted in [2, 8, 9]. It
can be seen that the calculated curve has a shape similar to the curve calculated
from experimental observations [4]. The initial peak deflection were approxi-
mately equal. The peak rise times differed by about 0.01 sec. There was also
a similarity between the rates of deflection. Since the fractional derivatives
model approximates the physical models more closely than other models[16],
it would be expected that the results using the fractional derivatives model
would be closer to the actual physiological values for deflection and rate of de-
flection of the centerline. The simplicity of the present solutions makes them
ideal for testing the accuracy of numerical methods. The stiffness factor, k, in
valve vibration and sound production explains the reason for an increased am-
plitude of the pulmonary component of the second sound relative to the aortic
component in pulmonary hypertension. Another important factor is the effect
of the viscosity factor, c, on the valve vibration. Since anemic patients have
reduced viscosities, they are shown to have augmented heart sounds[9]. Also,

from the relation ω =
√

k/m, it is clear that the higher the stiffness of the valve
leaflet, the higher will be the natural frequency of vibration. Hence, patients
with aortic stenosis can be expected to have higher frequency of the aortic com-
ponent of the second sound. On the other hand, the increased mass of valve
leaflet due to calcification will have only a little effect upon the frequency or
amplitude of the second sound because the effective mass, m, appearing in the
expression of ω consists largely of the fluid surrounding he valve leaflets[9].
We hope that the above analysis helps to explain some previously unexplained
clinical observations by means of factors that are identified to relate to valve
vibration and heart sounds that result from it.



1964 S. A. Al-Mezel, M. El-Shahed and H. El-selmy

References

[1] O. P. Agrawal, Stochastic analysis of dynamic systems containing frac-
tional derivatives, Journal of Sound and Vibrations, 247 (2001) 927-938.

[2] Blick. E. F, H. N. Sabbah and P. D. Stein, One-Dimensional Model
of Diastolic Semilunar Valve Vibrations Productive of Heart Sounds, Jour-
nal of Biomechanics,12 (1979) 223-227.

[3] M. El-Shahed, Adomian decomposition method for solving burgers
equation with fractional derivative, Journal of Fractional calculus, 24,
(2003) 23-28.

[4] M. El-Shahed, Fractional calculus model of the semilunar heart valve vi-
brations using Mathematica, International Mathematica Symposium IMS
2003, Imperial College- London, 7-11 July, (2003) 57-64.

[5] M. El-Shahed, Application of He’s homotopy perturbation method to
Volterra’s integro-differential equation, International Journal of Nonlin-
ear Sciences and Numerical Simulation, 6, (2005) 163-168.

[6] V. Gotolv, R. Vadov and P. Kolobaev, Acoustic mathematical model
of the heart of the person-The theory and experiment, XIII Session of the
Russian Acoustical Society, Moscow, (2003) 623-626.

[7] A. A. Kilbas, H. M. Srivastava and J. J. Trujillon, Theory and
Applications of Fractional Differential Equations, Elseviesr, 2006.

[8] J. Mazumadar and D. Woodard, A Mathematical Study of Semilunar
Valve Vibration Journal of Biomechanics, 17 (1984) 639-641.

[9] J. Mazumadar, An Introduction to Mathematical Physiology and Biol-
ogy, Australian Mathematical Society, 1989.

[10] K. Metzler and J. Klafter, The random walk’s guide to anomalous
diffusion: A fractional dynamics approach Physics Reports, 339 (2001)
1-77.

[11] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus
and Fractional Differential Equations, Wiley, New York, 1993.

[12] E. Momonia, T. Selway and T. Jina , Analysis of Adomian decom-
position applied to a third-order ordinary differential equation from thin
film flow, Nonlinear Analysis 66 (2007) 23152324.

[13] I. Podlubny, Fractional differential equations, Academic Press, New
York, 1999.



Heart valve vibrations 1965

[14] R. Saha and K. Bera, Analytical solution of the Bagley-Torvik equation
by Adomian decomposition method, Applied Mathematics and Computa-
tion 168 (2007) 398-410.

[15] S. Sakakbira, Properties of Vibration with Fractional Derivative Damp-
ing of Order 1

2
, JSME International Journal 40 (1997) 393-399.

[16] L. Suarez and L. Shokooh, Response of Systems with Damping Mate-
rials Modeled using Fractional Calculus, Appl Mech Rev 48 (1995) S118-
S126.

[17] L. Suarez and L. Shokooh ,An Eigenvector Expansion Method for the
Solution of Motion Containing Fractional Derivatives, Journal of Applied
Mechanics 64 (1997) 629-635.

[18] G. A. Thibodean and K. T. Pattom, Anatomy and Physiology,
Mosby, 1995.

[19] A. Wazwaz, Adomian decomposition method for a reliable treatment of
the Bratu-type equations, Applied Mathematics and Computation, 166
(2005) 652-663.

Received: October, 2008


