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Abstract

In this paper, we propose an algorithm for numerical solving an
inverse nonlinear diffusion problem. The algorithm is based on the
linearized nonlinear terms by Taylor s series expansion, removed the
time-dependent terms by Laplace transform, and so, the results at a
specific time can be calculated without step-by-step computations in
the time domain. Finite difference technique used for discretize problem.
In additional, the least-squares scheme is proposed to correct diffusion
coefficient. In the present study, the expression of diffusion coefficient
is unknown a priori. To show the efficiency and accuracy of the present
method a test problem will be studied.
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1 Introduction

Inverse heat conduction problems are encountered in various branches of sci-
ence and engineering. Mechanical, aerospace, chemical engineers, mathemati-
cians, astrophysicists, geophysicists, statisticians, and specialists of many other
disciplines are all interested in inverse problems, each with different applica-
tions in mind. In the field of heat transfer, the use of inverse analysis for the
determination of thermal properties such as thermal conductivity of solid by
utilizing the transient temperature measurements taken within the medium
has numerous practical applications. The governing heat conduction equation
and conditions become:

For T'> 0 let Qr = {(z,t) : x € (0,1),t € (0,7}, and seek both the
function u(x,t) and a(u(x,t)) > 0 for the initial boundary value problem

ou 0 ou
i %(a(u)%), 0<z<1l,0<t<T, (1)
u(z,0) = ), 0<z<l1, (2)
—a(u(0, t))% = go(t), 0<t<T, (3)
—a(u(l,t))au(gi; D ), o<t<T (@)
uw(0,t) = f(t), 0<t<T, (5)

where (), go(t), g1(t) and f(t) are continuous known functions. We consider
the problem (1)-(4) as a direct problem, where a(u) will be determined from
the overspecified data (5). It is evident that if a(u) is given, then the problem
(1)-(5)is overdetermined, i.e., for arbitrary data ¢(x), go(t), g1(¢) and f(t) there
may be no function u(z,t) such that all of the conditions (1)-(5) are satisfied.
On the other hand, for any given coefficients, there will exist a unique solution
u(z,t) of the direct problem. For an unknown function a(u) we must therefore
provide additional information (5) to provide a unique solution (u, a(u)) to the
inverse problem (1)-(5), [1]. Inverse problems and nonlinear inverse problems
including equation (1) have been previously treated by many authors who
considered certain special case of this type of problem [1-8].

Theorem 1.1 If ¢(x),go(t) and g1(t) are continuous functions, then the
problem (1)-(4) has a unique solution.
Proof. See Refs. [1].

For an unknown function a(u) we must therefore provide additional in-
formation (5) to provide a unique solution (u,a(w)) to the inverse problem

(1)-(5).
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Theorem 1.2 The problem (1)-(5) has a unique solution if p(z), go(t) and
g1(t) are continuous functions, ¢(0) = f(0) and a(u) satisfies the following
conditions:

I) a(s)eC[Ry, Rs),

where Ry = minu(z,t), Ry = mazu(z,t).

II) a(s) > 0.
Proof. See Refs. [1].

2 Overview of the method

The application of the present numerical method will find a solution of problem
(1)-(5), by using the following steps:

step 1) Linearized the nonlinear terms in equations (1), (3) and (4) by used
Taylor “s series expansion. Therefore, we obtain

0 ou 0%

—(a(u) 52) = a(@) (6)
where u = ( Ug, U1, . . ., UN ) denotes the previously iterated solution.
Similarly

ou(0,t) _ ou(0,t)
—a(u(0,1) 75 = —a(a(0,1) =5 . (7)
and du(1, 1) u(1, 1)
u ) _ — u )
—a(u(1,) =5 = —a(a(1, 1) =5, (8)

step 2) Removed time dependent terms using the Laplace transform. The
Laplace transform of a real function ((¢) and its inversion formula are defined
as

{(s) = £(ct) = [~ exp(=st)c(tyat,

and
1 v+ioco -

_ p1(F _
() = £7Cs) = 5= [ exp(st)((s)ds,
where s = v + iw, v,w € R. The Laplace transform of equations (6),(7), and
(8) give

@(ﬂ)% = su—p(x), 0<z<l1, 9)
. 0u
—a(u)a—x = Go(s), x=0, (10)

—a(ﬂ)% = Gi(s), z=1, (11)
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where 1, %, 227%, Go(s) and G4(s) are Laplace transform of w, g_Z’ %, go(t)
and ¢ (t) respectively.

step 3)In this step, we use central finite difference approximation for dis-
cretizing problem (9)-(11). Therefore

Upyy1 — 2Uy + Uy

CL(’I_LM) h2 = Sa# _p(:uh)7 H = 071)"'aN7 (12>
—a(ao)% = Gy(s), z=0, (13)
—a(ﬂﬂm%hum = Gi(s), z=1. (14)

AU = B. (15)

Note that equation (15) is a linear equation.
step 4) The Gaussian elimination algorithm is used to solve U.
step 5) The numerical inversion of the Laplace transform technique is ap-
plied to invert the transformed result to the physical quantity U = (ug uy ... uy).
step 6) The unknown function a(u) approximated as

a(u) = ag + ayu + agu® + ... + au’, (16)

where ag, a,...,a, are constants which remain to be determined simultane-
ously.

step 7) To minimize the sum of the squares of the deviations between wug(t)
(calculated) and f(t), at the specific times t = ¢,, we use least squares method.
The error in the estimate is

E(GO, ai, ..., aq) = ;}(Uo(tj) - f(tj))Qa (17>

which remain to be minimized. The estimated values of q; are determined
until the value of E(ao, a1, ..., a,) is minimum.

3 Numerical experiment

In this section, we are going to demonstrate some numerical results for diffusion
coefficient in the inverse problem (1)-(5). All the computations are performed
on the PC. However, to further demonstrating the accuracy and efficiency of
this method, the present problem is investigated and one example is illustrated.
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Example 3.1 In this example, let us consider the following inverse nonlin-
ear diffusion problem

Mo T, 0<r<i0<t<T (1)

u(z,0) = z, 0<z<l1, (19)
—a(u(O,t))auéOx’ D_ - t, 0<t<T, (20)
—a(u(l,t))% — 2t 0<t<T, (21)
u(0,t) = t, 0<t<T. (22)

For solving this problem the diffusion coefficient a(u) define as the following
form
a(u) = ap + ayu,

For determine ag and a; we use
N
E(ag,ar) = Y _(uo(t;) — f(t;))?,
j=0

therefore the coefficients can be obtained. The above procedures are repeated
until
N
Do(e)h)? <,
5=0
where € = 0.01, where

€j :Uo(tj) —f(t]), j :0,1,...,N, (23)
Tables 1 and 2 show the values of U' in x = ih and t = jk. The estimated
values of ag and a; are ag = 1.0446 and a; = 1.0356.

Numerical FEzxact | Numerical FExact
Us 1 Uj 1 Us; 2 Us 2
0.012356  0.010000 | 0.021102 0.020000
0.202267 0.210000 | 0.226587  0.220000
0.400156  0.410000 | 0.421451 0.420000
0.600023 0.610000 | 0.601455 0.620000
0.800085  0.810000 | 0.802174 0.820000

Table 1.

Numerical FExzact | Numerical Ezact

W N~ O .

Uj;,3 U; 3 Uj 4 Uj 4
0.029862 0.030000 | 0.038953  0.040000
0.228626  0.230000 | 0.256277  0.240000
0.428145 0.430000 | 0.424452 0.440000
0.619943 0.630000 | 0.602843 0.640000
0.805731 0.830000 | 0.809527 0.840000

Table 2.

W N~ O .
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4 Conclusion

The present study, successfully applies the numerical method involving the
Laplace transform technique and the finite difference method in conjunction
with the least-squares scheme to a nonlinear inverse problem. Owing to
the application of the Laplace transform, the present method is not a time-
stepping procedure. Thus the unknown diffusion coefficient at any specific
time can be predicted without any step-by-step computations from ¢ = t,. We
also apply other different sets of the initial guesses, such as {ag, a1, ...,a,} =
{0.2,0.2,...,0.2}, {0.7,0.7,...,0.7} and {1.1,1.1,..., 1.1}, results show that the
effect of the initial guesses on the accuracy of the estimates is not significant
for the present method.
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