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Flows Driven by a Combination of Source/Sink
Part 1: Exterior Creeping Flows
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Abstract

In this paper, the two-dimensional creeping flows outside a circular
cylinder induced by source/sink with various boundary conditions is
studied.

Analytical solutions for the flow field are obtained by straight forward
application of the Fourier method. The streamline patterns are sketched
for a number of special cases where the boundary conditions is varying
from no slip to perfect slip boundary conditions. Some interesting flow
patterns are observed in the parameter space which may have potential
significance in studies of various flows including flows in journal bearing,
mixing flows, etc.

We also investigate into the way the streamline topologies change as the
parameters are varied.

Mathematics Subject Classification: 76D07, 76D99

1 Introduction

The study of separation in low Reynolds numbers hydrodynamics is a widely
investigated subject due to its relevance to engineering ([3] and [4]) and phys-
iological [8] applications. Separation in slow viscous flow at zero Reynolds
number (creeping flows) is significant in pertaining to the application of fluid
theory because if it occurs in creeping flows then it is almost certain to persist
at non-zero Reynolds numbers. Support of this phenomenon can be found
in [10]. Therefore, the study of creeping flows is valuable for understanding
the onset of separation in low Reynolds number hydrodynamics. It has been
observed in low Reynolds number flow that some solid particles in the fluid
are trapped by an attached singularity and cannot be flushed out of the corre-
sponding separation region. Hence, they may eventually adhere to points on
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the boundary where separation occurs. Examples of this are the entrapment
of dirt in bearings and the formation of plaque in blood arteries.

The study of slow viscous flow with a rough surface is important in the devel-
opment of low Reynolds number hydrodynamics due to the fact that in reality
it is impossible to have a perfectly smooth surface immersed in an actual fluid
motion. There are industrial and biomedical applications in the study of fluid
flow with a rough surface. The industrial applications include the cleansing
of a rough surface which has been exposed to contaminants, and the effect of
roughness on lubrication. One of the important engineering applications is the
study of the gas cetrifuge, as used for separation of uranium isotopes (see for
example [6], [7]).

The paper is organized as follows. In section 2, the basic equations are given
and using the Stokes stream function the problem is reformulated. The bound-
ary conditions are then derived in terms of stream function and a brief discus-
sion on the no-slip constraints is provided. In section 3, the general solution
is derived by the use of Fourier expansion method. The solutions to various
singularity driven flow problems are presented in section 4 and 5. The ba-
sic singularities considered here are source and sink. The effect of boundary
conditions on the flow fields is discussed in each case. The flow description
is illustrated in different situations through streamline plots. The effect of
primary singularity locations on the fluid velocity on the surface is discussed
briefly. The concluding remarks of the present analysis are presented in section
6.

2 Mathematical preliminaries

For two-dimensional steady and slow viscous flow the (non-dimensional) gov-
erning equation of motion are

R(q.V)q = —Vp + V?q, (1)

V.q=0, (2)

where q is the velocity field, p is the pressure field, R = % is the Reynolds
number. The velocity vector in Navier-Stokes equations (1) and continuity
equation (2) is subjected to the no-slip condition q = 0 on a rigid fixed bound-
ary. Now if the ratio between the magnitudes of the convection and diffusion
terms in the Navier-Stokes equations is bounded within the flow region, then
as the Reynolds number approaches zero (1) and (2) becomes

Viq = Vp. (3)

V.q=0. (4)



exterior creeping flows 1993

Any solution of (3) and (4) for p and q is called a creeping flows.

The two-dimensional flows discussed in this paper can be described by a single
scalar function. If the fluid motion lies in a plane descibed by the Cartesian
coordinates (x,y) then the continuity equation (2) is satisfied by representing
the velocity field q as

q= CWka)a (5>

where k is the unit vector normal to the xy-plane and ¢ = ¥(z,y) is a func-
tion of x and y called the stream function. By substituting (5) into (3) and
eleminating the pressure field, the biharmonic equation is obtained as

Vi =0, (6)

The boundary conditions can be expressed as

(). Normal velocity is zero on the boundary i.e., ¢, = 0 on r = a.
(ii). Tangential velocity is proportional to the tangential stress at the surface

of the cylinder i.e., g9 = —T,4, where
I

10q,0 0 q
r 00 T@r r ) (7)

Tro = ,u[

Is the tangential stress and A > 0 is the slip coefficient. In terms of stream
function, these conditions become

oY 0 10y

=0 and — =AM———, on r=1. 8
4 or orr or’ (®)
In the present paper, we investigate the flows induced by a combination of line
source and sink in the presence of a circular cylinder.

3 Method of solution

There are classical and numerical methods to solve (6) subject to the boundary
conditions (8). The most suitable and commonly used technique is the Fourier
expansion method. In this method, the given flow is expanded in a Fourier
series with known Fourier coefficients. Then, the unknown coefficients of the
perturbed flow (also written in a Fourier series) are computed with the aid of
the boundary conditions. The other methods applicable to the present problem
include the image method ([2], [1]) and the boundary integral equation method
[9]. We adopt the Fourier representation technique for our problem and make
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an attempt to sum the resulting series solution. To this end, we write the
given flow field in the absence of the cylinder as

oo

Yo=Y _lanr™ + Bur™ ] £(6). (9)
n=0
Here, f,(0) = a, cosnf + b, sinnb, and oy, B,, a,, b, are known constants.
The solution satisfying (6)in the presence of a circular cylinder can be taken
as

> A, B,
¢:¢O+Z[T—n+rn—_2]fn(9)- (10)
n=0

where A, and B, are unknown constants to be determined. We remark that
the constants oy and [y corresponding to n = 0 may be adjusted by choosing
appropriate ones. Applying the boundary conditions (8) we obtain

A, n n (n+ 1A = A1)\ o o

o (—1+ m)ana + (—1+ a1 )Bpa” . (11)
B, n (n+1)(1-X\) 1o
prre R ey wr s WALl ey wrny ey v (12)

where A} = 2)\/(142X), 0 < \; < 1. The corresponding coefficients for a rigid
cylinder with no-slip and perfect-slip boundary conditions may be obtained
from (11) and (12) by setting A\; = 0 and A\; — 1 respectively

4 Source and sink

We now employ the solution scheme derived in the previous section. Substitu-
tion of equations (9), (11) and (12) in (10) yields the Fourier series expansion
for the stream function for a source and sink in the presence of a cylinder.
The stream function of the flow induced by a source of strength I'; located at
r=c, # =0 is given by

rsinf
=T ). 1

Yo Ltan (c—rcose) (13)

For r > ¢, above expression may be expanded in the form
Yo=I1> . sin(n@). (14)

o nct
From (11) and ((12), we obtain
Iy

ap=—, Bp=7%=0 6,=1 for all n>1. (15)

e’
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Figure 1: Diagram illustrating the geometry of the source and the sink (I =
c+0).

The coefficients A,, and B,, for a source flow after the introduction of a cylinder
are

A, ==T1(—1+ n___ya" (16)
n == — —— ) —ay,
! nA +1— X "nc?
1 a2n—2
B, =-T ) 1
" l(n/\1+1—)\1) cn n ( 7>

The stream function for the source-sink combination becomes

4.1 no-slip boundary condition

By setting \; = 0, Fourier series solution with the constants given in (16) and
(17) may be summed to yield the following closed form expression:

7 sin 6 1, sinf

_ csin @
) — tan }

r2¢2 — 2rccosf + 1

(18)
By using standard techniques for sink of strength I'; at » = ¢ and 0 = 7 we
get

Y =T [tan™*( Y4+r(1—7r?)

c—rcosf rc— cosf

rsin g sin 6

¢sin 6 }
r2¢2 4+ 2rccos@ + 11
(19)

W = Taftan™( )+r(l—1%)

) —tan™!(

¢+ rcosf r¢ + cosf
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(b)

—~

a)

(d)
Figure 2: Flow past a cylinder in the presence of a source and sink for strength
['y = —I'y = 1 and Ay = 0 for different position (a)c =¢= 2.5 (b) c=2.5,¢ =
1.5(c) e=1.5,6=25(d) c=15,¢=1.5.

e

—~

c)

Figures 2(a)-(d)show the symmetry which can be simple as reflection across
the x-axis. The only difference between (a)-(d) is the shift of the overall phase.

4.2 boundary condition when A\ = 0.4, 0.5, 0.6.

For general 0 < A\; < 1, Fourier series solution with the constants given in (16)
and (17) may be summed by standard techniques, to get

rsinf sin 6 1—X\

Y =T [tan™}( )+ N

) — tan " (

(1=r)1a]. (20)

c—1rcosf rc— cosf
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Figure 3: Flow past a cylinder in the presence of (a) a single source at ¢ =
25, I'y =1 and A\; = 0.2 (b) a single source at ¢ = 2.5, I'y = 1 and A\; = 0.4
(c) a source and sink at ¢ = 3.5, ¢ =25, ')y = =Ty =1 and \; = 0.6 (d) a
source and sink at ¢ =2.0, ¢=3.5, 'y = —-I'y; =1 and \; =0.7.

where

a=xp plfro1 sin c sin @
L= 52 [ 5 pan (2 7
0

d
c— pcosf p2—20p0089—|—02} P

and similarly for sink at r =cand 0 =«

rsin 6 sin 6 1-—)\
=Dy[tan H(—————) —tan~! 1—r)I,|. (21
v 2| tan (E—H“cosﬁ) an (TE+COS(9 + A1 ( ") } (21)
where
a-x) /e, psin @ p € sinf
Iy,=1r 7 B —tan ! d
A [ —tan 5+pcos€>+p2+26pcose+62} P

We see in Figure 3(a)-(b) that the slip parameter has little effect on the qual-
itative features of the flow fields in the Stokes regime which is weakly depend
on the value of A;.
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In Figures 3, the flows induced by a single source and a combination of source
and sink in the presence of a cylinder are shown for various values of A\;. In the
case of single source, expected flow patterns emerge and these do not change
qualitatively for different values of the slip parameter (see Figures 3(a)-(b)).
In the case of the source located to the right of the cylinder at (c,0), and the
sink is to the left of the cylinder at (¢, 7). Two typical scenarios are shown in
Figures 3(c)-(d). The location of the sink is fixed in both of these plots. In
Figure 3(c), the sink is closer than the source to the cylinder whereas in Figure
3(d) the source is closer than the sink to the cylinder. It is rather striking that
there is no direct transfer of fluid from the source to the sink in the finite plane.
This is because the cylinder blocking the flow in Stokes regime. It may be seen
from the representative plots Figures 3(c)-(d) that all the fluid expelled from
the source goes away to infinity and all that drawn into the sink comes from
infinity. Similar features were noticed in the case of no slip boundary. Eddies
do not appear in any of these cases as expected.

4.3 perfect-slip boundary condition

By taking the limit A\; — 1, in (20) the solution may be reduces to

in 6 sin 6
- 4, rsin T ' 99
4 1 tan (c—rcosé’) tan (TC—COSQ)} (22)
and similarly for sink equation (21)
rsin 0 sin 0
= ytan ™ (———) — tan~} (——)|. 2
¥ o[ tan (E+rcosé’) an (7“6+ cos 6 } (23)

Figure (4) show flow patterns for a perfect-slip boundary condition when a
sink and a source are located at distances x = —2.5 and x = 2.5, respectively.
It is found that a symmetric appears with their centers aligned on the y—axis.
It is shown in Figure (4)(b)-(d) the flow seems to contain a recirculating zone
surrounded by fluid flowing from the source to the sink. In figures (4)(c)
and (4)(d) if we increase the strength of a source or a sink the eddies pushes
towards the cylinder. This result confirm Lord Rayleigh [5] work who found no
secondary flow in the case of a source and a sink located diagonally opposite
on the surface of a cylinder. One can easily modify this formulae for the cases
shown in Figures (2),(3) and (4) and can draw inferences about some of the
qualitative features of the various flow patterns directly from this formulae.
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Figure 4: Flow past a cylinder in the presence of a source and sink at ¢ =
¢ =2.5and A\; = 1 (perfect boundary condition) for different strength (a)l'; =
1,F2 =0 (b) Fl = —FQ = 1(C) Fl = 1,F2 = -5 (d) Fl :5,F2 =—1.
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5 CONCLUSION

Exact analytical solution are presented for creeping flow induced by source and
sink in the presence of a circular cylinder with various boundary conditions.
The closed form solution given here in each case contains an integral involving
the non-dimensional slip parameter A\;. The flow fields do not change with the
slip parameter also eddies do not appear in any of these cases as expected.
Finally the solutions and flow patterns presented here clearly demonstrate the
effect of \; on source and sink driven flows.
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