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Abstract

In this paper, two-dimensional creeping flows generated by source
and sink inside a circular cylinder are studied in the presence of different
boundary conditions. For simplicity, line source and sink are assumed to
be parallel to the cylinder axis, all axes in the same plane. The interior
boundary value problem associated with these flows is solved in terms
of a stream function. Analytical solutions for the flow field are obtained
by straight forward application of the Fourier method. These solutions
are used to plot streamline topologies of these flows and the flow pat-
terns are sketched for a number of special cases where the boundary
conditions is varying from no slip to perfect slip boundary conditions.
Eddies of various sizes and shapes appear as the parameter is varied.
Some interesting flow patterns are observed in the parameter space
which may have applications in vortex mixing flows.

Mathematics Subject Classification: 76D07, 76D99

1 Introduction

The first part (El-Bashir 2009 ref[4]; herein referred to as part 1) is investigates
flows outside a cylinder for various combinations (strengths and locations) of
source and sink. The study of creeping flows is a widely investigated subject
due to its relevance to stirring and mixing fluids applications. An insight into
various mechanisms and flow topologies of such flows with respect to avail-
able free parameters can be beneficial to improving the performance of various
systems involving such flows. To gain such insight, it is usually desirable to
design models that retain the basic flow feature of the complex problem, yet
simple enough to be analyzed accurately using a combination of analysis and
numerics. The most common model used to demonstrate stirring process in
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the two-dimensional creeping flows generated by source/sink inside a circular
cylinder. In these models, a line source and sink, which may be regarded as a
mixer or a stirrer, has been used as a model. Incidentally, this flow is topo-
logically equivalent to the flow between two eccentric circular cylinders with
inner or both cylinders rotating which models flow in a journal bearing (see
[2] for a comprehensive analysis).
In this paper, we include varying boundary conditions to study interior creep-
ing flows induced by source and sink of the type that can be used to model
various physical effects. These boundary conditions are more general and allow
choices of boundary conditions ranging from no-slip to perfect-slip. There are
many situations where such boundary conditions could be more appropriate.
For example, if the boundary were coated with polymer. In the presence of
such boundary conditions in the interior of a circular cylinder, we derive exact
representation of solutions induced by source and sink. Using Fortran, we have
explored various flow features of these flows which are discussed later in this
paper.
The varying boundary conditions consider here provide the possibilities of a
richer and interesting variety of flow patterns as shown in this paper. Some of
these interior flows with no-slip boundary condition have been considered by
other investigators (see [7] and [5]). The work of [7] and [5] have shown the
existence of attached eddies in some cases. The flow patterns possible in these
studies are limited by the fact that the fluid does not slip at the surface.
The paper presents a collection of formulae, derived here for the first time,
and streamline topologies for various positions of source and sink driven two-
dimensional creeping flows inside a circular cylinder which include the effect
of slip boundary conditions.
The paper is organized as follows. In section 2, the basic equations are given
and using the Stokes stream function the problem is reformulated. The bound-
ary conditions are then derived in terms of stream function and a brief discus-
sion on the no-slip constraints is provided. In section 3, the general solution
is derived by the use of Fourier expansion method. The solutions to various
singularity driven flow problems are presented in section 4 and 5. The basic
singularities considered here include single and double stokeslets. The effect
of no-slip on the flow fields is discussed in each case. The flow description
is illustrated in different situations through streamline plots. The concluding
remarks of the present analysis are presented in section 6.

2 Mathematical preliminaries

For two-dimensional creeping flow the (non-dimensional) governing equation
and boundary conditions are browed from part 1 [4] as
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∇4ψ = 0, (1)

Subject to the boundary conditions

(i). Normal velocity is zero on the boundary i.e., qr = 0 on r = a.

(ii). Tangential velocity is proportional to the tangential stress at the surface

of the cylinder i.e.,qθ =
λ

μ
Trθ, where
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Is the tangential stress and λ ≥ 0 is the slip coefficient. In terms of stream
function, these conditions become

ψ = 0 and
∂ψ

∂r
= λr

∂

∂r

1

r

∂ψ

∂r
, on r = a. (3)

In the present paper, we investigate the flows induced by a combination of line
source and sink inside a circular cylinder.

3 Method of solution

There are classical and numerical methods to solve (1) subject to the boundary
conditions (3). The most suitable and commonly used technique is the Fourier
expansion method. In this method, the given flow is expanded in a Fourier
series with known Fourier coefficients. Then, the unknown coefficients of the
perturbed flow (also written in a Fourier series) are computed with the aid of
the boundary conditions. The other methods applicable to the present problem
include the image method ([3], [1]) and the boundary integral equation method
[6]. We adopt the Fourier representation technique for our problem and make
an attempt to sum the resulting series solution. To this end, we write the
given flow field in the absence of the cylinder as

ψ0 = G(r) +
∞∑

n=1

[
αn

rn
+

βn

rn−2
]fn(θ). (4)

Here, fn(θ) = an cosnθ+bn sinnθ, and αn, βn, an, bn are known constants. The
function G(r) is a known function of r alone associated with the given flow.
The Fourier representation of the complete solution in the interior domain can
be taken as

ψ = ψ0 + A0 +B0r
2 +

∞∑
n=1

[Anr
n +Bnr

n+2]fn(θ). (5)
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The constants A0 and B0 satisfying the boundary conditions will be found
later. The unknown Fourier coefficients An and Bn for n ≥ 1 may be calculated
separately by applying the boundary condition. These coefficient are given by

anAn =
(n+ 1)(1 − λ1)αn/a

n + (nβn/a
n−2)(1 − 2λ1)

nλ1 − 1 + λ1
. (6)

an+1Bn = −(n− 1)(1 − λ1)βn/a
n−1 + (nαn/a

n+1)

nλ1 − 1 + λ1
. (7)

where λ1 = 2λ/(1 +2λ), 0 ≤ λ1 ≤ 1. The corresponding coefficients for a rigid
cylinder with no-slip and perfect-slip boundary conditions may be obtained
from (6) and (7) by setting λ1 = 0 and λ1 → 1 respectively

4 Source and sink

We now employ the solution scheme derived in the previous section (equations
(4)-(7)) to source and sink in the presence of a cylinder. We show that the
Fourier series solution can be summed to yield closed form expressions for the
stream function.
The stream function of the flow induced by a sink of strength Γ1 located at
r = c, θ = 0 is given by

ψ0 = Γ1 tan−1
( r sin θ

c− r cos θ

)
. (8)

For r > c, above expression may be expanded in the form

ψ0 = Γ1

∞∑
n=1

cn

nrn
sin(nθ). (9)

From (4) and ((7), we obtain

G(r) = 0, αn =
Γ1C

n

n
, βn = 0 for all n ≥ 1. (10)

Since G(r) = 0, the coefficients A0 and B0 vanish in the present case. The
coefficients An and Bn for a source flow after the introduction of a cylinder are

An = − 1

nλ1 − 1 + λ1

[
(n+ 1)(1 − λ1)

αn

a2n

]
, (11)

Bn =
1

nλ1 − 1 + λ1

[ nαn

a2n+2

]
. (12)

The stream functions for the source and the sink are shown in details in the
proceeding subsection.



Interior creeping flows 2007

(c) (d)

(a) (b)

Figure 1: Flow generated by a source and sink (λ1 = 0, Γ1 = −Γ2 = 1)
for different positions (a)c = ĉ = 0.9 (b) c = ĉ = 0.7 (c) c = ĉ = 0.5 (d)
c = ĉ = 0.1.

4.1 no-slip boundary condition

By setting λ1 = 0, Fourier series solution with the constants given in (11) and
(12) may be summed to yield the following closed form expression:

ψ = Γ1[ tan−1(
r sin θ

c− r cos θ
) − tan−1(

sin θ

rc− cos θ
)
]
. (13)

By using standard techniques for source of strength Γ2 at r = ĉ and θ = π we
get

ψ = Γ2[ tan−1(
r sin θ

ĉ+ r cos θ
) − tan−1(

sin θ

rĉ+ cos θ
)
]
. (14)

The no-slip boundary conditions does not change the flow qualitatively as
shown in some representive plots in figure 1. The flow in all cases consists of
two eddies separated by a dividing streamline (ψ = 0) whose end points are
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resting on the wall of the cylinder. The shap of the eddies, depend on the
source and the sink locations. Figure 1 above shows streamline patterns for
the case of equidistant (c = ĉ) for several choices of c. For c=0.9 near the wall
a symmetric pair of eddies appear as shown in figure 1(a). Initially the large
eddy extends up to the wall and start shrinking while moving inward towards
the center. Some of this scenario is shown in figure 1(a)-(d).

4.2 general boundary condition

For general 0 < λ1 < 1, Fourier series solution with the constants given in (11)
and (12) may be summed by standard techniques, to get

ψ = Γ1[ tan−1(
r sin θ

c− r cos θ
) − tan−1(

sin θ

rc− cos θ
) − (r2 − 1)Isi

cλ1

]
. (15)

where

Isi =
r

(1−λ1)
λ1

λ1

∫ r

0

sin θ ρ
(λ1−1)

λ1

ρ2 − 2cρ cos θ + c2
dρ

and similarly for source at r = ĉ and θ = π

ψ = Γ2[ tan−1(
r sin θ

ĉ+ r cos θ
) − tan−1(

sin θ

rĉ+ cos θ
) − (r2 − 1)Iso

ĉλ1

]
. (16)

where

Iso =
r

(1−λ1)
λ1

λ1

∫ r

0

sin θ ρ
(λ1−1)

λ1

ρ2 + 2ĉρ cos θ + ĉ2
dρ

Figures 2(a)-(d) show flow patterns for an increasing sequence of λ1 when a
source and a sink are located at distances x = 0.5 and x = −0.75, respectively.
First, a symmetric pair of secondary eddies appears with their centers almost
aligned on the y-axis. This is shown in Figure 2 (a) for λ1=0.4. With increasing
values of λ1, these eddies tilt to the right and start moving towards the line
joining the source and the center of the cylinder. Figure 2 (b) shows this for a
typical value of λ1=0.45. A small flow region near the line joining the sink and
the center of the cylinder ensues where the fluid seems to flow from the center
to the sink. Rest of the flow seems to contain a recirculating zone surrounded
by fluid flowing from the source to the center. With further increases in the
value of λ1, the flow region between the center and the sink grows in size where
as the rest of the flow region shrinks in size as seen in figure 2 (c) for λ1=0.55.
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Figure 2: Flow generated by a source and sink at (c = 0.5, ĉ = 0.75) for various
values of λ1. Here Γ1 = −Γ2 = 1 (a)λ1 = 0.4 (b) λ1 = 0.45 (c) λ1 = 0.55 (d)
λ1 = 0.9.
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Figure 3: Flow generated by a source and sink at (c = 0.5, ĉ = 0.5) for various
values of λ1. Here Γ1 = −Γ2 = 1 (a)λ1 = 0.2 (b) λ1 = 0.4.

Eventually, at λ1=0.9, a dipole-type flow ensues at the origin.
If a source and a sink are located equidistant (c = ĉ = 0.5) from the center
along a diagonal, then the flow structure (See figures 3(a)-(b)) changes little.
An increase in the value of λ1 in this case pushes the eddies towards the wall.

4.3 perfect-slip boundary condition

By taking the limit λ1 → 1, in (15) the solution may be reduces to

ψ = Γ1[ tan−1(
r sin θ

c− r cos θ
) − r2 tan−1(

sin θ

rc− cos θ
)
]
. (17)

and similarly for source equation (16)

ψ = Γ2[ tan−1(
r sin θ

ĉ+ r cos θ
) − r2 tan−1(

sin θ

rĉ+ cos θ
)
]
. (18)

Figures 4 (a)-(c) show flow patterns for a decreasing sequence of values of
equidistant c = ĉ when a source strength Γ1 is double a sink strength Γ2. First,
a symmetric pair of eddies appears with their centers almost aligned on the
y−axis. this is shown in Figure 4(a) for c = ĉ = 0.5. With decreasing values
of c = ĉ these eddies tilt to the right and start moving towards the line joining
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(c) (d)

(a) (b)

Figure 4: Flow generated by a source and sink (λ1 =
1) for different strength and same streamlines ψ =
−2.5, −2, −1.5, −1, −0.7, −0.3, −0.09, −0.02, 0, 0.02, 0.09, 0.3, 0.7,
1, 1.5, 2, 2.5 (a)Γ1 = 2, Γ2 = −1, c = ĉ = 0.5 (b)
Γ1 = 2, Γ2 = −1, c = ĉ = 0.3 (c) Γ1 = 2, Γ2 = −1, c = ĉ = 0.1 (d)
Γ1 = 1, Γ2 = −2, c = ĉ = 0.1
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the source and the center of the cylinder. Figures 4(b) and 4(c) shows this for
a typical values of c = ĉ = 0.3 and c = ĉ = 0.1, respectively. For fixed c = ĉ,
we can compare 4(c) and 4(d). In 4(d) the sink strength Γ2 is double a source
strength Γ1, the flow seems to contain a recirculating zone surrounded by fluid
flowing from the source to the center.

5 CONCLUSION

We have demonstrated here the effect of slip on steady flows inside an infinitely
long cylinder induced by source and sink, using three types of boundary condi-
tions. In each of these cases, an exact solution for the stream function has been
derived in closed form which have been subsequently used to plot streamline
topologies for these flows. These shed light on the qualitative features of the
flows such as eddies. In all cases, eddies of different sizes and shapes are found
to occur. The streamline plots illustrate the existence of interior saddle points
(hyperbolic points) in these flows. The hyperbolic points depend on both slip
as well as the location of the source and the sink.
In the case of equal strength (Γ1 = −Γ2), both the slip parameter and the
locations have significant effects on the flow patterns. The cores of the ed-
dies in these flows move closer to the source or the cylinder wall depending
on whether the primary source and sink are located at equidistance from the
origin or otherwise. This flow model might be used in certain processes involv-
ing simultaneous suction and injection of a fluid. Finally, analytical results
and the streamline topologies presented here may inspire one to design new
experiments on mixing or chaos, and also to use these for validating numerical
simulations on such flows in bounded domains.
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