τ Prefilters in Intuitionistic Fuzzy Sets

N. Pankajam

Dr.Mahalingam College of Engineering & Technology Coimbatore, India pankajam_rangarj@yahoo.com

Abstract

The notion of fuzzy sets was introduced by L.A. Zadeh[9] and was extended to intuitionistic fuzzy subsets by K.Atanassov[1]. The notions of fuzzy and intuitionistic fuzzy topological spaces were introduced and studied by C.L.Chang[5], D.Coker[6]. In this paper intuitionistic fuzzy τ^c prefilter is introduced and the relation between the τ^c prefilters and ultra filters are studied.

Keywords: Intuitionistic fuzzy topology; Prefilters, Ultra filters.

1 Introduction

After the introduction of the concept of fuzzy sets by Zadeh[9] in 1983, Atanassov proposed a generalization of the notion of fuzzy set: the concept of intuitionistic fuzzy set[1]. Some basic results on intuitionistic fuzzy sets were published in [2,3]. The notions of fuzzy and intuitionistic fuzzy topological spaces were introduced and studied in [5,6]. Blasco Mardones et al [4] introduced a new process of compactification for a fuzzy topological space by using δ^c prefilters. In this paper we define τ^c prefilter in intuitionistic fuzzy sets and obtain some of its properties.

Definition 1.1 [1]

Let X be a nonempty set. An intuitionistic fuzzy set(IFS for short) A is an object having the form $A = \{\langle x, \mu(x), \gamma(x) : x \in X \rangle\}$ where the functions $\mu_A : X \to I$ and $\gamma_A : X \to I$ denote the degree of membership(namely $\mu_A(x)$) and the degree of non membership (namely $\gamma_A(x)$) of each element $x \in X$ to the set A, respectively, and $0 \le \mu_A(x) + \gamma_A(x) \le 1$ for each $x \in X$.

Definition 1.2 [3]

Let X be a nonempty set and let A and B be two IFSs of X. Then

2108 N. Pankajam

(a) $A \subseteq B$ iff $\mu_A(x) \le \mu_B(x)$ and $\gamma_A(x) \ge \gamma_B(x)$ for all $x \in X$.

(b)
$$A = B$$
 iff $A \subset B$ and $B \subset A$

(c)
$$A \cup B = \left\{ \left\langle x, \mu_A(x) \lor \mu_B(x), \gamma_A(x) \land \gamma_B(x) \right\rangle : x \in X \right\}$$

(d)
$$A \cap B = \left\{ \left\langle x, \mu_A(x) \wedge \mu_B(x), \gamma_A(x) \vee \gamma_B(x) \right\rangle : x \in X \right\}$$

e)
$$\overline{A} = \{\langle x. \gamma_A(x), \mu_A(x) \rangle : x \in X \}$$

Definition 1.3 [6]

Let $\{A_i : i \in J\}$ be an arbitrary family of IFSs in X.Then

(a)
$$\bigcap A_i = \left\{ \left\langle x, \wedge \mu_{A_i}, \vee \gamma_{A_i} \right\rangle : x \in X \right\}$$

(b)
$$\bigcup A_i = \left\{ \left\langle x, \vee \mu_{A_i}, \wedge \gamma_{A_i} \right\rangle : x \in X \right\}$$

Definition 1.4 [6]

$$0_{\sim =} \left\{ \left(x, 0, 1 \right) : x \in X \right\} \text{ and } 1_{\sim =} \left\{ \left(x, 1, 0 \right) : x \in X \right\}$$

Definition 1.5 [6]

An intuitionistic fuzzy topology (IFT for short) on a nonempty set X is a family τ of IFSs in X satisfying the following axioms:

- (a) $0_{\sim}, 1_{\sim} \in \tau$
- (b) $A_1 \cap A_2 \in \tau$ for any $A_1, A_2 \in \tau$
- (c) $\bigcup A_i \in \tau$ for any arbitrary family $\{A_i : i \in J\}$

In this case the pair (X,τ) is called an intuitionistic fuzzy topological spaces (IFTS for short) and any IFS in τ is known as an intuitionistic fuzzy open sets (IFOS for short) in X.

Definition 1.6 [6]

An intuitionistic fuzzy topological space in the sense of Lowen [8] is a pair (X,τ) where (X,τ) is an IFTS and each IFS in the form $C_{\alpha,\beta}=\left\{(x,\alpha,\beta):x\in X\right\}$ where $\alpha,\beta\in I$ are arbitrary and $\alpha+\beta\leq 1$, belongs to τ .

Definition 1.7 [6]

The complement \overline{A} of an IFOS A is an IFTS (X,τ) is called an intuitionistic fuzzy closed set (IFCS for short) in X.

Definition 1.8 [7]

The support of a fuzzy set A is a crisp set that contains all the elements of X that have nonzero membership grades in A.

Notation

If τ is an IFT on X we let τ^c denotes the collection of all intuitionistic fuzzy closed sets.

2. τ Prefilters in Intuitionistic Fuzzy Sets

Definition 2.1

Let be a IFTS.Let $\mathcal{F} \subset \tau^c$ satisfies

- (i) $\mathcal{F} \neq 0_{\sim}$ and $0_{\sim} \notin \mathcal{F}$
- (ii) $A_1, A_2 \in \tau$ then $A_1 \cap A_2 \in \tau$
- (iii) If $A \in \mathcal{F}$ and $B \subset \tau^c$ with $A \subseteq B$ then $B \in \mathcal{F}$.

 \mathcal{F} is called an IF closed filter or τ^c a -prefilter on X.

Definition 2.2

Let \mathcal{F} be a τ^c prefilter and let $\mathbf{B} \subset \mathcal{F}$. \mathcal{G} is called a base for \mathcal{F} if for each $A \in \mathcal{F}$ there is a $B \in \mathcal{G}$ such that $B \subseteq A$.

Definition 2.3

Let $\mathcal{K} \subset \tau^c$. \mathcal{K} is a sub base for some τ^c prefilter if the collection $\{ \cap A_i : i \in H \}$ is a base for some τ^c prefilter.

Theorem 2.1

Let $\mathfrak{G} \subset \tau^c$. Equivalent statements are

- (i) There is a unique τ^c prefilter \mathcal{F} such that \mathcal{G} is a base for it.
- (ii) (a) $\Re \neq 0$ and $0 \notin \Re$

(b)If $B_1, B_2 \in \mathcal{B}$, there is $B_3 \in \mathcal{B}$ with $B_3 \subseteq B_1 \cap B_2$

Proof follows from the definitions 2.1, 2.2, 2.3.

Remark 2.1

If $\mathfrak B$ satisfies (a) and (b) the generated τ^c prefilter $\mathfrak F$ is $\mathfrak F = \left\{ A \in \tau^c : \text{there exists } B \in \mathfrak B \text{ with } B \subseteq A \right\}.$

Definition 2.4:

Let $\mathcal{G} \subset \tau^c$ with the property that the intersection of any finite sub collection from \mathcal{G} is nonempty. There exists a unique τ^c prefilter containing \mathcal{G} whose base is the set of all finite intersections of elements in \mathcal{G} . Such a τ^c prefilter is called the τ^c prefilter generated by \mathcal{G} .

As a consequence of the previous observations we get the following result.

2110 N. Pankajam

Theorem 2.2

Let \mathcal{F} be τ^c prefilter and $A \in \tau^c$. The following statements are equivalent:

- (i) $\mathcal{F} \cup \{A\}$ is contained in a τ^c prefilter
- (ii) For each $B \in \mathcal{F}$ we have $A \cap B \neq 0$

Definition 2.5

Let ${\mathfrak F}$ be τ^c prefilter. ${\mathfrak F}$ is an intuitionistic fuzzy τ^c ultra filter if ${\mathfrak F}$ is a maximal element in the set of τ^c prefilters ordered by the inclusion relation.

Theorem 2.3

Every τ^c prefilter is contained in some intuitionistic fuzzy τ^c ultra filter.

The following result characterizes τ^c ultra filters.

Theorem 2.4

Let \mathcal{F} be τ^c prefilter on X.The following statements are equivalent:

- (i) \mathcal{F} is an intuitionistic fuzzy τ^c ultra filter
- (ii) If A is an element of τ^c such that $A \cap B \neq 0$ for each $B \in \mathcal{F}$ then $A \in \mathcal{F}$.
- (iii)If $A \in \tau^c$ and $A \notin \mathcal{F}$, then there is $B \in \mathcal{F}$ such that $supp(B) \subseteq X supp(A)$.

Proof

 $(i) \Rightarrow (ii)$

Suppose $A \in \tau^c$ and $A \cap B \neq \mathbf{0}_{\sim}$ for each $B \in \mathcal{F}$.

By theorem2.2, there is τ^c prefilter \mathfrak{F}^* generated by $\mathfrak{F} \cup \{A\}$. Then $\mathfrak{F} \subseteq \mathfrak{F}^*$. Since \mathfrak{F} is a τ^c ultra filter the above inclusion must imply that $\mathfrak{F} = \mathfrak{F}^*$. Therefore $A \in \mathfrak{F}$.

(ii) ⇒(iii)

Let $A \in \tau^c$ and $A \notin \mathcal{F}$

By (ii) there exists at least one $B \in \mathcal{F}$ such that $A \cap B = \mathbf{0}_{\sim}$. Take $x \in \operatorname{supp}(B)$, then $\mu_B(x) > 0$. Since $A \cap B = \mathbf{0}_{\sim}$ we get $\mu_A(x) = 0$. Therefore $x \notin \operatorname{supp}(A)$. That is $x \in X - \operatorname{supp}(A)$. Hence $\operatorname{supp}(B) \subseteq X - \operatorname{supp}(A)$.

 $(iii) \Rightarrow (i)$

Let \mathcal{G} be a τ^c prefilter with $\mathcal{F} \subset \mathcal{G}$ and $\mathcal{F} \neq \mathcal{G}$.

Then there exists $A \in \mathcal{G}$ such that $A \notin \mathcal{F}$.

By (iii) there exists $B \in \mathcal{F}$ such that $supp(B) \subseteq X - supp(A)$.

Take $x \in X$. Then $\mu_B(x) = 0$ or $\mu_B(x) > 0$.

If $\mu_B(x) = 0$ then $\mu_{A \cap B}(x) = 0$.

If $\mu_{R}(x) > 0$ then $x \in \text{supp}(B)$.

Hence $x \in X - \text{supp}(A)$. That is $x \notin \text{supp}(A)$. Therefore $\mu_A(x) = 0$.

Hence $\mu_{A \cap B}(x) = 0$. Therefore $A \cap B = \mathbf{0}_{\sim}$.

Since $A, B \in \mathcal{S} \Rightarrow A \cap B \in \mathcal{S}$ we get $\mathbf{0}_{\sim} \in \mathcal{S}$ which is a contradiction.

Therefore $\mathcal{F}=\mathcal{G}$. Hence \mathcal{F} is an intuitionistic fuzzy τ^c ultra filter.

Theorem 2.5

Let U_1 and U_2 be a pair of different intuitionistic fuzzy τ^c ultra filters

on X. Then
$$\left(\bigcap_{A_1 \in U_1} \sup p(A_1)\right) \cap \left(\bigcap_{A_2 \in U_2} \sup p(A_2)\right) = 0_{\sim}$$

Proof

Suppose there exists x belonging to the above intersection. Then for each $A_1 \in U_1$ and $A_2 \in U_2$, $\mu_{A_1}(x) \neq 0$, $\mu_{A_2}(x) \neq 0$. Therefore $A_1 \cap A_2 \neq 0$. for every $A_1 \in U_1$.

Hence by (i) \Rightarrow (ii) of theorem2.4 we get $A_2 \in U_2$. This is true for every $A_2 \in U_2$.

Therefore $U_2 \subseteq U_1$.

Since U_2 is an ultra filter we get $U_1 = U_2$.

This is a contradiction as U_1 and U_2 are given to be different intuitionistic fuzzy τ^c ultra filters. Hence our assumption is wrong. Therefore the given intersection is empty.

References

- [1] K.T. Atanassov, Intuitionistic fuzzy sets, in: VII ITKR's_ Session, Sofia, June 1983, Central Sci.Tech.Library, Bulg. Acad.sci. 1984.
- [2] K.T.Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1986), 87-96.
- [3] K.T. Atanassov, Review and new results on intuitionistic fuzzy sets, Preprint IM-MFAIS- Sofia. (1988)1-88.
- [4] N.Blasco Mardones, M.Macho Stadler and M.A.De Prada Vicente, On fuzzy compactifications, Fuzzy sets and Systems, 43, (1991)189-197.
- [5] C.L.Chang, Fuzzy Topological Spaces, J.Math.Anal.Appl., 24, (1968) 182-190.
- [6] D.Çoker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 88, (1997), 81-89.
- [7] George J.Klir and Bo Yuan, Fuzzy sets and fuzzy logic: Theory and Applications, Prentice hall of India Private Limited, NewDelhi 2008.

2112 N. Pankajam

[8] R.Lowen, Fuzzy Topological spaces and fuzzy Compactness, J.Math Anal.Appl.56, (1976), 621-633.

[9] L.A.Zadeh, Fuzzy sets, Inform. and Control 8, (1965),338–353.

Received: February, 2009