
Applied Mathematical Sciences, Vol. 3, 2009, no. 46, 2263 - 2269

Recursive Relations for the Number

of Spanning Trees

Mohammad Hassan Shirdareh Haghighi1

shirdareh@susc.ac.ir

Khodakhast Bibak2

khmath@gmail.com

1,2Department of Mathematics
Shiraz University, Shiraz 71454, Iran

Abstract

In this paper, we find recursive relations t(Ln) = 4t(Ln−1)−t(Ln−2),
t(Fn) = 3t(Fn−1) − t(Fn−2), and t(Wn) = t(Wn−1) + t(Fn) + t(Fn−1),
for determining the number of spanning trees in ladders Ln, fans Fn,
and wheels Wn.
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1 Introduction

All graphs in this paper are finite, undirected, and simple (i.e. without loops
or multiple edges). For a graph G, a spanning tree in G is a tree which has the
same vertex set as G. The number of spanning trees in a graph (network) G,
denoted by t(G), is an important invariant of the graph (network). It is also
an important measure of reliability of a network.

A famous and classic result on the study of t(G) is the following theorem,
known as the Matrix tree Theorem [3]. The Laplacian matrix (also called
Kirchhoff matrix ) of a graph G is defined as L(G) = D(G)−A(G), whereD(G)
and A(G) are the degree matrix and the adjacency matrix of G, respectively.

Theorem 1.1. (Matrix tree Theorem) For every connected graph G, t(G)
is equal to any cofactor of L(G). �
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However this theorem is not feasible for large graphs, and various techniques
are extended to find the number of spanning trees in different classes of graphs.

Let us first review some methods of combining graphs.

The union of graphs G and H is the graph G
⋃

H with vertex set V (G)
⋃

V (H)
and edge set H(G)

⋃
E(H). If G and H are disjoint, we refer to their union as

a disjoint union, denoted by G+H. The join of two graphs G and H, G
∨

H,
is obtained from the disjoint union of G and H by additionally joining every
vertex of G to every vertex of H.

The join Wn = Cn

∨
K1 of a cycle Cn and a single vertex is referred to as a

wheel with n spokes. Similarly, the join Fn = Pn

∨
K1 of a path Pn and a

single vertex is called a fan.

The cartesian product of graphs G and H is the graph G � H whose vertex
set is V (G) × V (H) and whose edge set is the set of all pairs (u1, v1)(u2, v2)
such that either u1u2 ∈ E(G) and v1 = v2, or v1v2 ∈ E(H) and u1 = u2.
The notation used for the cartesian product reflects this fact. The cartesian
product Ln = P2 � Pn is called a ladder.

In the next section, we derive recursive relations t(Ln) = 4t(Ln−1)− t(Ln−2),
t(Fn) = 3t(Fn−1) − t(Fn−2), and t(Wn) = t(Wn−1) + t(Fn) + t(Fn−1), for
evaluating the number of spanning trees in ladders, fans, and wheels.

2 Main Results

There is a simple and elegant recursive formula for the number of spanning
trees in a graph. It involves the operation of contraction of an edge, which we
now introduce. An edge e of a graph G is said to be contracted if it is deleted
and its ends are identified. The resulting graph is denoted by G.e. Also we
denote by G− e the graph obtained from G by deleting the edge e.

Theorem 2.1. [3] Let G be a graph (multiple edges are allowed in here).
Then for any edge e

t(G) = t(G− e) + t(G.e).

�

Now by applying this theorem, we obtain the expressed recursive relations.

Theorem 2.2. The number of spanning trees of the ladder Ln (n ≥ 3)
satisfies the following recursive relation:

t(Ln) = 4t(Ln−1)− t(Ln−2).
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Proof. By using theorem above we get

t(Ln) = t( q q q qq q q q
)

= t( q q qq q q
) + t( q q q qq q q

)

= 2t( q q qq q q
) + t( q q qq q q

)

= 3t( q q qq q q
) + t( q q qq q

)

= 3t( q q qq q q
) + t( q q qq q q

)− t( q q qq q
)

= 4t( q q qq q q
)− t( q qq q

)

= 4t(Ln−1)− t(Ln−2).

On the other hand, we know that t(L1) = 1, and t(L2) = 4. Consequently by
solving this recursion we obtain:

Corollary 2.3. The number of spanning trees in the ladder Ln (n ≥ 1) is
equal to:

t(Ln) =

√
3

6
((2 +

√
3)n − (2−

√
3)n).

�

This corollary is due to Sedlacek ([6]), but it is derived from a different
approach. Similarly, we obtain a recursive relation for calculating the number
of spanning trees in a fan.

Theorem 2.4. For the fan Fn (n ≥ 3)

t(Fn) = 3t(Fn−1)− t(Fn−2).

Proof. Applying theorem 2.1 gives
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t(Fn) = t(
s ss

s

ss
)

= t(
s ssss

) + t(
s ssss

)

= 2t(
s ssss

) + t(
s sss

)

= 2t(
s sss

) + 3t(
s sss

)

= 2t(
s sss

) + 3
(
t(

s sss
s

)− t(
s sss

)
)

= 3t(
s ssss

)− t(
s sss

)

= 3t(Fn−1)− t(Fn−2)
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Since t(F1) = 1, and t(F2) = 3, the following corollary follows, which is
also proved in [1] by applying the matrix tree theorem.

Corollary 2.5.

t(Fn) = F2n =
1√
5
((

3 +
√

5

2
)n − (

3−
√

5

2
)n), n ≥ 1,

where Fn denotes the nth Fibonacci number. That is, Fn+2 = Fn+1 + Fn, for
n ≥ 1 with F1 = F2 = 1. �

Now we derive a recursion for enumerating the number of spanning trees
in a wheel.

Theorem 2.6. For the wheel Wn (n ≥ 4) we have

t(Wn) = t(Wn−1) + t(Fn) + t(Fn−1).

Proof. Again theorem 2.1 implies that

t(Wn) = t( r r
r

r

r
)

= t( r r
r

r

r
) + t( r

r

r
r )
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= t(Fn) + t( r
r

r
r ) + t( r

r

r
)

= t(Fn) + t(Wn−1) + t( r rr

r
)− t( r

r

r
)

= t(Fn) + t(Wn−1) + t( r r
r

r

r
)− t( r rr

r
)

− t( r r
r

r
) + t( r

r

r
)

= t(Wn−1) + 2t(Fn)− 2t(Fn−1) + t(Fn−2)

= t(Wn−1) + t(Fn) + t(Fn−1).

If we define C2 as two parallel edges, then this recursive relation holds also for
n = 2. Thus, since t(W2) = 5, we get:

Corollary 2.7. The number of spanning trees of the wheel Wn (n ≥ 1) is
equal to:

t(Wn) = L2n − 2 = F2n+2 − F2n−2 − 2 = (
3 +

√
5

2
)n + (

3−
√

5

2
)n − 2,

where Ln denotes the nth Lucas number. That is, Ln+2 = Ln+1 +Ln, for n ≥ 1
with L1 = 1 and L2 = 3. �

This formula first proved by Sedlacek ([5]) and later by Myers ([4]), using
the matrix tree theorem.
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