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Abstract

In this paper, we consider the following unidimensional nonlinear
parabolic problem

(P )


∂u
∂t = (|ux|p−2ux)x + f(u) on (−L,L)× R+,

u(±L, t) = 0 on R+,

u(x, 0) = u0(x) on ]− L,L[.

We begin by describing the set E(L) of nonnegative equilibrium solu-
tions to the motivating example, which consists of problem (P ) with
the special choice f(u) = u(1 − u)(u − a) and 0 < a < 1

2 . This will
be followed by the study of existence, uniqueness and stabilization of
solutions to problem (P ) when f is a general function satisfying suitable
assumptions. Finally, we show, in part of application, the stability of
the trivial solution and of a large positive equilibrium solution.

1 Introduction

The aim of this paper is the study of the large time behaviour of nonnegative
solutions to the initial boundary value problem

(P )


∂u
∂t

= (|ux|p−2ux)x + f(u) on (−L, L)× R+,

u(±L, t) = 0 on R+,

u(x, 0) = u0(x) on ]− L, L[.

where p > 1, f is locally lipschitz continuous with f(0) = 0 and u0 is bounded.
This kind of problems arise in many �elds of science: Non-newtonian �uid
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mechanics, gas or �uid �ow in porous media, spread of certain biological pop-
ulations,...
We primarily focus our study on a motivating example, which consists of prob-
lem (P ) with the special choice

f(u) = u(1− u)(u− a) where 0 < a <
1

2
.

We base our analysis on properties of the time-map related to the elliptic
problem associated with problem (P ) in this case, in order to obtain char-
acterization of nonnegative equilibrium solutions and thus describe in detail
their set E = E(L) that we can write as

E(L) = E∗(L) ∪ {0},

since v ≡ 0 is a trivial solution. According, we shall show here the following
results.

If p ∈]1, 2], there is one critical parameter value Lp > 0, such that

i) E∗(L) = ∅ for all 0 < L < Lp,

ii) E∗(Lp) consists of one isolated positive solution,

iii) for all L > Lp, E∗(L) consists of two isolated positive solutions
noted respectively s ≡ s(L) and q ≡ q(L) with s < q on (−L, L).

If p ∈]2, +∞[, there exist tree critical values of L: 0 < Lp < L1
p < L0

p

and such that

i) E∗(L) = ∅ for all 0 < L < Lp,

ii) E∗(Lp) consists of one isolated positive solution,

iii) E∗(L) consists of tow isolated positive solutions noted respectively
s and q with s < q on (−L, L) for Lp < L < L1

p,

iv) for L > L1
p, N a positive integer, and NL1

p < L < (N + 1)L1
p,

E∗(L) consists of one isolated positive solution q and N j-parameter
families Sj(L), j = 1, ..., N of nonnegative solutions for L1

p < L <
L0

p, however, for L > L0
p it contains only N j-parameter families

Sj(L), j = 1, ..., N of nonnegative solutions.

Our work extends interesting results obtained by D.Aronson, M.G.Crandall
and L.Peletier in [2], where the study of the set of equilibrium solutions E(L)
extends the one done by Smoller and Wasserman in [13], and determinate it
for problem (P ) with a cubic nonlinearity f when the elliptic term is of the
form (um)xx with m > 1, instead of (|ux|p−2ux)x.
In our study of E(L), we distinguish two cases according to p > 2 or 1 < p ≤ 2.
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In the case where p > 2, we show that L0
p < +∞ and that the set of equilib-

rium solutions is the same as in the study done in [2] even if their parameter
L0

p is in�nite. In contrast, when 1 < p ≤ 2, Our set E(L) is characterized
by similar elements to those found by smoller and wasserman in [13] for the
operator uxx.
On the other hand, the detailed description of E(L) allows us to prove that
u(t, u0) converges, as t tends to +∞, to a limit in E(L). More precisely, we
establish the stability of the trivial solution and of the large positive solution
q, obtained in the �rst part, of the elliptic problem associated with problem
(P ) by exhibiting suitable invariant set K ⊂ X, where X is a complete metric
space of functions, and K ∩ E(L) is either {0} or {q(L)}.
These last stabilization results are obtained thanks to a general stabilization
theorem that we establish for the general problem (P ), after proving various
basic existence, uniqueness, comparison and regularity theorems of problem
(P ), and de�ning a complete metric space of functions in which orbits of prob-
lem (P ) are precompact. Moreover, if 0 ≤ u0 ≤ 1 and u(t, u0) is solution of
(P ), then we show, by means of a Lyapunov function associated with (P ) that
the w-limit set

w(u0) = {w ∈ X, u(tn, u0) → w inX, for some sequence (tn) with tn−→
n→∞

∞}

is contained in E(L).
To this end, we shall follow the same approach used by Aronson, Grandall and
Pelletier in [2] for problem (P ) when the elliptic term is of the form (um)xx.
Let us mention works [5] and [6] of A.El hachimi and F.De Thelin, where the
authors showed stabilization results for problem (P ) when Ω ⊂ RN , N > 1;
their approach was based on the use of supersolutions of problem (P ), they
also obtained that w(u0) ⊂ E(L) by using regularizing e�ects that they estab-
lished through their analysis.
This paper is organized as follows: we devote the second section to determi-
nate the set of equilibrium solutions of the motivating example. In section
III, we return our attention to the general case of (P ) and establish existence,
uniqueness, comparison and stabilization theorems. Finally, section IV, con-
tains applications of precedent general results: we prove the stability of some
equilibrium solutions in the case of our motivating example.

2 Equilibrium solutions

We begin our analysis by establishing a characterization of equilibrium solu-
tions to problem (P ) in the case where f is de�ned by

f(u) = u(1− u)(u− a) with 0 < a <
1

2
.
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De�nition 1. A function u : [−L, L] −→ R+ is called an equilibrium solution
of problem (P ) when it is a classical solution of the following problem

(Pe)

{
(|ux|p−2ux)x + f(u) = 0 on (−L, L),

u(±L) = 0.

It is clear that u ≡ 0 is a trivial solution of problem (Pe). We shall show
below that, in this case, problem (P ) possesses nontrivial solutions obtained
under some conditions on L > 0.

2.1 A characterization of equilibrium solutions

We set

F (s) =

∫ s

0

f(t)dt and λp(µ) =

(
p− 1

p

) 1
p
∫ µ

0

dv

(F (µ)− F (v))
1
p

,

we have the following

Proposition 1. u is a positive solution of problem (Pe) if and only if(
p− 1

p

) 1
p
∫ µ

u(x)

dv

(F (µ)− F (v))
1
p

= |x| for |x| ≤ L,

where µ ∈ (α, 1) and L ∈ R+ are related by λp(µ) = L and α is the unique
root of F in (a, 1).

Proof. Let us consider the following problem

(P ∗
e )

{
(|u′|p−2u′)

′
+ f(u) = 0,

u(ξ) = µ, u′(ξ) = 0,

with ξ ∈ (−L, L) and µ ∈ R+.
We shall seek conditions on ξ that allow problem (P ∗

e ) to be equivalent to (Pe)
in the sens that a solution of (P ∗

e ) is also a solution of (Pe); since, for a positive
solution u of problem (Pe), there exists ξ ∈ (−L, L) such that u′(ξ) = 0 and
0 < u(x) 6 u(ξ), for all x ∈ (−L, L).ie. there exist ξ and µ for which u is a
solution of (P ∗

e ).
Conversely, let u be a solution of (P ∗

e ).
In the case where µ = 1, the unique solution of (P ∗

e ) is u ≡ 1, since f is a
locally lipschitzian function satisfying f(1) = 0.
For µ > 1, it is clear that solution of (P ∗

e ) is convex on its domain of de�nition
since we have f(u) < 0 for u > 1.
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Consequently, there is no solution of problem (P ∗
e ) satisfying the boundary

condition u(±L) = 0, when µ > 1.
Hence, we consider µ ∈ (0, 1).
Next, multiplying the equation of problem (P ∗

e ) by u′ gives

p− 1

p
(|u′|p)′ + f(u)u′ = 0.

So, for u ≤ µ, we get

p− 1

p
|u′(x)|p = F (µ)− F (u).

This last equation has a sense provided that F (µ)− F (u) ≥ 0.
First, it is easy to see that F is nonincreasing on (0, a) and that there exists
a unique α ∈ (a, 1) such that F (α) = 0, F (x) > 0 on (α, 1) and F (x) < 0 on
(a, α).
Arguing as in [2], page 1004, we obtain(

p− 1

p

) 1
p
∫ µ

u

dv

(F (µ)− F (v))
1
p

= |x− ξ|, for α < µ < 1. (2.1)

Remark 1. The singularity at v = µ in (2.1) is integrable for p > 1 since

lim
v→µ

F (µ)− F (v)

µ− v
= f(µ) > 0,

which implies that F (µ)− F (v) > M(µ− v) for some M > 0 and v near µ.

Remark 2. The integrand in (2.1) can be extended down to u = 0 as follows

λp(µ) =

(
p− 1

p

) 1
p
∫ µ

0

dv

(F (µ)− F (v))
1
p

, for α < µ < 1. (2.2)

Indeed, for any v ∈ (0, µ) we have F (µ) − F (v) > 0, and so (2.2) is well
de�ned.

Now, if u is a solution of (Pe), we have u(±L) = 0, then

λp(µ) = |L− ξ| = |L + ξ|,

which implies that ξ = 0, and so,(
p− 1

p

) 1
p
∫ µ

u

dv

(F (µ)− F (v))
1
p

= |x|, for |x| ≤ L.

This ends the proof of proposition 2.
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Lemma 1. λp(α) < +∞ if and only if p > 2.

Proof. Since

lim
v→α

F (v)− F (α)

v − α
= f(α) > 0,

there exists δ > 0 and M > 0 such that

F (α)− F (v) > M(α− v), ∀v ∈ (α− δ, α).

Thus, ∫ α

α−δ

dv

(F (α)− F (v))
1
p

< +∞ for p > 1.

On the other hand, since

lim
v→0+

F (0)− F (v)

−v2
= −f

′
(0)

2
< 0,

there exist ε > 0, m1 < 0 and m2 < 0 such that

m1 ≤
F (0)− F (v)

−v2
≤ m2, ∀v ∈ (0, ε).

Hence,

(−m1)
− 1

p

∫ ε

0

dv

v
2
p

≤
∫ ε

0

dv

(F (0)− F (v))
1
p

≤ (−m2)
− 1

p

∫ ε

0

dv

v
2
p

.

So, ∫ ε

0

dv

(F (0)− F (v))
1
p

< +∞ if and only if p > 2.

Consequently
λp(α) < +∞ if and only if p > 2.

In the next, we shall give conditions on L in order to obtain the existence
of a positive solution for problem (Pe).
We shall begin by proving some properties of the associated time-map.

2.2 properties of the time-map

Proposition 2. We have the following properties of λp

(i) λp ∈ C1((α, 1)), for any p > 1,

(ii) λp is continuous at α for any p > 2,



Stabilization of solutions 2277

(iii) lim
µ→1

λp(µ) < +∞ if and only if p > 2,

(iv) lim
µ→α

λ
′
p(µ) = −∞, for any p > 1,

(v) lim
µ→1

λ
′
p(µ) = +∞ for any p > 1.

Proof. (i)De�ne

Λp(µ) =

∫ µ

0

dv

(F (µ)− F (v))
1
p

,

which becomes by the change of variables τ = v
µ
, as Λp(µ) = µGp(µ), where

Gp(µ) =

∫ 1

0

dv

(F (µ)− F (τµ))
1
p

.

One can easily verify that the function Gp is derivable on (α, 1) and that

G
′

p(µ) = −1

p

∫ 1

0

f(µ)− τf(τµ)

(F (µ)− F (τµ))1+ 1
p

dτ.

Hence, it is straightforward that λp ∈ C1((α, 1)).
(ii)By lemma 1, it su�ces to show that lim

µ→α
λp(µ) = λp(α) for p > 2, to obtain

(ii).
Indeed, we can write

Λp(µ) = I1(µ) + I2(µ),

where

I1(µ) =

∫ α

0

dv

(F (µ)− F (v))
1
p

and I2(µ) =

∫ µ

α

dv

(F (µ)− F (v))
1
p

.

It is straightforward that
lim
µ→α

I2(µ) = 0.

On the other hand, for v ∈ [0, α] we have,

1

(F (µ)− F (v))
1
p

<
1

(−F (v))
1
p

.

By lemma 1, the second part function of the inequality is integrable only for
p > 2. Hence

lim
µ→α

I1(µ) = Λp(α) for any p > 2.

(iii) We have

lim
µ→1

1

(F (µ)− F (τµ))
1
p

=
1

(F (1)− F (τ))
1
p

,
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and ∫ 1

1−ε

dτ

(F (1)− F (τ))
1
p

< +∞ if and only if p > 2,

then, we deduce (iii).
(iv)From

Λp(µ) = µGp(µ),

we have

Λ
′

p(µ) =
1

µp

∫ µ

0

θp(µ)− θp(v)

(F (µ)− F (v))1+ 1
p

dv,

where
θp(µ) = pF (µ)− µf(µ).

Since θp(α) = −αf(α) < 0, there exists δp > 0 such that

θp(µ) <
θp(α)

2
< 0, ∀µ ∈ [α, α + δp).

On the other hand, θp(0) = 0. Then there exists γp ∈ (0, α) such that

|θp(v)− θp(0)| < −θp(α)

4
∀v ∈ [0, γp].

So, for µ ∈ [α, α + δp) and v ∈ [0, γp] we get

θp(µ)− θp(v) <
θp(α)

4
< 0. (2.3)

Let now
Λ
′

p(µ) = J1(µ) + J2(µ),

where

J1(µ) =
1

pµ

∫ γp

0

θp(µ)− θp(v)

(F (µ)− F (v))1+ 1
p

dv

and

J2(µ) =
1

pµ

∫ µ

γp

θp(µ)− θp(v)

(F (µ)− F (v))1+ 1
p

dv.

Arguing as above, we can show that near µ we have∣∣∣∣∣ θp(µ)− θp(v)

(F (µ)− F (v))1+ 1
p

∣∣∣∣∣ ≤ c

(µ− v)
1
p

and so J2(µ) remains bounded as µ → α.
Now, using (2.3), we obtain that

J1(µ) <
θp(α)

4pµ

∫ γp

0

dv

(F (µ)− F (v))1+ 1
p

.
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But for v < γp < α, we have

lim
µ→α

1

(F (µ)− F (v))1+ 1
p

=
1

(−F (v))1+ 1
p

,

hence, in order to obtain (iv) it su�ces to study the singularity of the function
v 7→ 1

(−F (v))
1+ 1

p
near zero.

Near zero we have

m1 <
F (0)− F (v)

−v2
< m2.

So, by application of Fatou's lemma we deduce that

lim
µ→α

∫ γp

0

dv

(F (µ)− F (v))1+ 1
p

= +∞.

Therefore
lim
µ→α

λ
′

p(µ) = −∞.

(v)Using the change of variables τ = v
µ
, we can write

Λ
′

p(µ) =
1

p

∫ 1

0

θp(µ)− θp(τµ)

(F (µ)− F (τµ))1+ 1
p

dτ.

Moreover,

lim
µ→1

θp(µ)− θp(τµ)

(F (µ)− F (τµ))1+ 1
p

=
θp(1)− θp(τ)

(F (1)− F (τ))1+ 1
p

and

lim
τ→1

θp(1)− θp(τ)

1− τ
= θ

′

p(1) > 0.

Hence, we deduce that, for some positive constant c, we have

c

(1− τ)1+ 2
p

<
θp(1)− θp(τ)

(F (1)− F (τ))1+ 1
p

<
c

(1− τ)1+ 2
p

.

Now, since ∫ 1

1−ε

θp(1)− θp(τ)

(F (1)− F (τ))1+ 1
p

dτ = +∞,

we have ∫ 1

1−ε

θp(1)− θp(τ)

(F (1)− F (τ))1+ 1
p

dτ = +∞,

and so, by application of Fatou's lemma, we get

lim
µ→1

Λ
′

p(µ) = +∞.
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I.ADDOU obtained in [7] more properties of λp. We shall recall the follow-
ing one, which will be used near.

Proposition 3. For any p > 1, we assume that

θ
′′

p (µ) ≤ 0 for all µ ∈ (0, xp]

with strict inequality in an open interval Ip ⊂ (0, xp], and

θ
′′

p (µ) ≥ 0 for all µ ∈ [xp, 1).

Where xp is some point in (0, 1) for which θ
′′
p changes sign.

Then, the time map λp admits a unique critical point; which is a minimum.

Proof. (See [5]).

Remark 3. In order to interpret the results of proposition 2 and proposition
3 we translate them to the following graphs of λp as follows:

This interpretation takes form in the following

Lemma 2. Let µp be the unique root of the equation λp(µ) = L stated in
proposition 3 and Lp = λp(µp). Then for all p ∈ (1, 2], we have λp((α, 1)) =
[Lp, +∞) and

λp(µ) = L has


no solution, if 0 < L < Lp,

one solution, if L = Lp,

two solutions noted µ+
p (L) and µ−p (L), if L > Lp,

where µ+
p and µ−p are respectively the largest and the smallest solutions of

L = λp(µ).
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Lemma 3. For p ∈]2, +∞), set L0
p = lim

µ→1
λp(µ), L1

p = λp(α) and suppose that

L0
p > L1

p. Then we have λp([α, 1)) = [Lp, L
0
p) and

λp(µ) = L has


no solution, if 0 < L < Lp,

one solution, if L = Lp or L1
p < L < L0

p,

two solutions noted µ+
p (L) and µ−p (L), if Lp < L < L1

p.

Theorem 2.1. The set E∗(L) of positive solutions of problem (Pe) can be
characterized as follows: for any p > 1

- If 0 < L < Lp there is no positive solution for problem (Pe).

- If L = Lp (resp L = Lp and L1
p < L < L0

p), for p ∈ (1, 2] (resp p > 2),
problem (Pe) admits one positive solution denoted by u(., µp).

- If L > Lp (resp Lp < L < L1
p), for p ∈ (1, 2](resp p > 2), problem (Pe)

admits two positive solutions denoted by s(., L) = u(., µ−p ) and
q(., L) = u(., µ+

p )

Remark 4. By proposition 2, λp is a continuous function of µ's if and only if
p > 2; so u(., α) = u(., µ−p (L1

p)) generates families of nonnegative solutions of
problem (Pe) on intervals (−L, L) with L > L1

p for p > 2.
So that u(., α) extended by 0 for L1

p 6 |x| 6 L is also solution of (Pe) for
L > L1

p and so does the function de�ned by

v(x, h) =

{
u(x− h, α) if |x− h| ≤ L1

p,

0 if |x− h| > L1
p;

provided that |h| 6 L− L1
p and p > 2.

More generally, let N be a positive integer and L satisfying L ≥ NL1
p. For

each vector ξ = (ξ1, ..., ξN) such that

−L ≤ ξ1 − L1
p, ξi + L1

p ≤ ξi+1 − L1
p, i = 1, ..., N − 1 and ξN + L1

p ≤ L; (2.4)

it is straightforward that the function

v(x, ξ) =

{
u(x− ξi, α) if |x− ξi| ≤ L1

p,

0 if |x− ξi| > L1
p, for i = 1, ..., N,

is a nonnegative solution of problem (Pe).

Let SN(L) denotes the collection of functions v(., ξ) where ξ ∈ RN satis�es
(2.4). We have the following
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Proposition 4. For p > 2 and L > L1
p, we set

S(L) =
N⋃

j=1

Sj(L)

where N is the integral part of L
L1

p
.

Then we have
E∗(L) = {q(., L)} ∪ S(L).

Theorem 2.2. The set E(L) of positive solutions of (Pe) is given by the fol-
lowing

• For p ∈]1, 2] we have

E(L) =


{0} for 0 < L < Lp,

{0, q(., Lp)} for L = Lp,

{0, s(., L), q(., L)} for Lp < L.

• For p ∈]2, +∞) we have

E(L) =


{0} for 0 < L < Lp,

{0, q(., Lp)} for L = Lp,

{0, s(., L), q(., L)} for Lp < L < L1
p,

{0, q(., L)} ∪ S(L) for L > L1
p.

Remark 5. In our study of E(L), we distinguish two cases according to p > 2
or 1 < p ≤ 2.
In the �rst case where p > 2, we �nd that L0

p < +∞ and prove that the
set of equilibrium solutions is the same as the one obtained by D.Aronson,
M.G.Crandall and L.Peletier in [2] for p = 2. While in the case where
1 < p ≤ 2, we show that the set E(L) is characterized by similar elements
to those found by smoller and Wasserman in [13] for the operator uxx.

3 general case

This part is devoted to the various basic, existence uniqueness continuous
dependence on initial data comparison and stabilization results concerning
problem (P ).
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Throughout this section, we set Ω = (−L, L) and Qt = Ω× [0, t].
Let us consider problem (P ) de�ned by

(P )


∂u
∂t

= (|ux|p−2ux)x + f(u) on (−L, L)× R+,

u(±L, t) = 0 on R+,

u(x, 0) = u0(x) on ]− L, L[,

and assume that the data f and u0 satisfy the following assumptions

(H1) f : R −→ R is a locally lipschitzian function satisfying f(0) = f(1) = 0.

(H2) u0 ∈ L∞(Ω) ∩W 1,p
0 (Ω) and 0 ≤ u0 ≤ 1.

De�nition 2. • By a solution u of problem (P ) on [0, T ] we mean a func-
tion satisfying the following properties:

(i) u ∈ C([0, T ], L1(Ω)) ∩ L∞(QT ) ∩ L∞(0, T, W 1,p
0 (Ω)),

(ii)
∫

Ω
u(t)ϕ(t)−

∫ ∫
Qt

uϕt − |ux|p−2uxϕx =
∫

Ω
u0ϕ(0) +

∫ ∫
Qt

fϕ,

for all ϕ ∈ C1(Q̄T ) such that ϕ ≥ 0 and ϕ(±L, t) = 0 ∀ t ∈ [0, T ].

• A solution on [0,∞) means a solution on each [0, T ], ∀ T > 0.

• A subsolution (supersolution) is de�ned by (i) and (ii) with equality re-
placed by ≤ (≥).

3.1 Existence, uniqueness and continuous dependence for

problem (P )

Theorem 3.1. Assume that assumptions (H1) and (H2) are satis�ed, then,
problem (P ) admits a unique solution such that 0 ≤ u ≤ 1

Proof. The solution of problem (P ) is obtained as a limit, as ε → 0, of a
sequence uε whose terms are solutions to a regularized problem associated
with problem (P ).
Since u0 ∈ L∞(Ω) ∩ W 1,p

0 (Ω), then there exist a sequence u0ε in C∞0 (Ω) such
that 0 6 u0ε 6 1 and ‖ u0 − u0ε ‖W 1,p

0 (Ω) −→ε→0
0.

Consequently, the regularized problem associated with problem (P ) de�ned by

(Pε)


∂u
∂t

= 4ε
pu + fε(u) on QT ,

u(±L, t) = ε on (0, T ],

u(x, 0) = u0ε(x) sur Ω̄,

where 4ε
pu = ∇.φε(∇u), φε(∇u) = (|∇u|2 + ε)

p−2
2 ∇u and (fε) ⊂ C1(R+),

such that fε converges uniformly, as ε → 0, to f , ∂fε

∂u
(u(t, x)) 6 K, for some

constant K > 0, and fε(0) > 0, possesses a unique solution uε ∈ C2,1(Q̄T )
satisfying 0 ≤ uε ≤ 1, and we have the following estimates.
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Lemma 4. For ε > 0, we have

(i) ‖ ∂uε

∂t
‖L2(0,T,L2(Ω))≤ C,

(ii) ‖ uε ‖L∞(0,T,W 1,p(Ω))≤ C,

(iii) ‖ uε ‖Lp(0,T.W 1,p(Ω))≤ C,

(iv) ‖ φε(∇uε) ‖L∞(0,T,Lp
′
(Ω))

≤ C.

Remark 6. These estimates are proved in [5] and [6] in the case where problem
(P ) is de�ned on a bounded subset Ω of RN with N ≥ 1. The solution u of
problem (P ) is showed to belong to L∞(0, T, W 1,p(Ω) ∩ L∞(Ω)). It remains to
show that u ∈ C([0, T ], L1(Ω)) to conclude that u is a solution of problem (P )
in the sens of de�nition 2.

On the one hand, from estimates (i) and (ii) we have

∂uε

∂t
is bounded in L2(0, T, L2(Ω)),

and
uε is bounded in L∞(0, T, W 1,p(Ω)).

On the other hand, according to the Rellich-Kondrakov theorem (see [1] in
page 144), the space W 1,p(Ω) is compactly imbedded in Lq(Ω), ∀1 6 q 6 +∞
and p > 1 in the case of a unidimensional space. This allow us to conclude,
by application of corollary 4 of [12], that there exists a subsequence uεn such
that εn −→

n→+∞
+∞ and uεn −→ u in C([0, T ], L2(Ω)). Consequently uεn −→ u

in C([0, T ], L1(Ω)), since C([0, T ], L2(Ω)) ⊂ C([0, T ], L1(Ω)).

Remark 7. The space W 1,p(Ω) is compactly imbedded in Lq(Ω), for 1 6 q 6
+∞, only if N = 1. But, it's compactly imbedded in Lp(Ω) for any N ∈ N∗.
So, when N > 1 and p > 2, we have Lp ↪→ L2, then, we can apply corollary 4
of [12] again to obtain that u ∈ C([0, T ], L1(Ω)).

Proposition 5. Let u1 and u2 be two solutions of problem (P ) on [0, T ] asso-
ciated respectively with u01, f1 and u02, f2. Then

‖ u1(t)− u2(t) ‖L1(Ω)≤‖ u01 − u02 ‖L1(Ω) + ‖ f1 − f2 ‖L1(Qt) . (3.1)

Proof. If u1 and u2 are two solutions of problem (P ) associated respectively
with u01 and u02, then for any test function ϕ ∈ C1(QT ) with ϕ ≥ 0 and
ϕ(±L, t) = 0, we have∫

Ω

(u1(t)− u2(t))ϕ(t)−
∫ ∫

Qt

(u1 − u2)(ϕt −
|∇u1|p−2∇u1 − |∇u2|p−2∇u2

u1 − u2

ϕx)dxdt =∫
Ω

(u01 − u02)ϕ(0) +

∫ ∫
Qt

(f1 − f2)ϕdxdt.

(3.2)



Stabilization of solutions 2285

Let

η =
|∇u1|p−2∇u1 − |∇u2|p−2∇u2

u1 − u2

.

From the monotonicity of the function ξ −→ |ξ|p−2ξ and the fact that
‖ u1 − u2 ‖L∞(Ω)< M , we can deduce that the function η veri�es the following
assertions

(i) η ≥ 0

(ii) η ∈ Lp
′
(Ω).

In the following step we construct an appropriate function to use in (3.2) as a
test function and which enables us to conclude to inequality (3.1).
To this end, choose a sequence (ηn) in C∞0 (Ω) such that (ηn) converges to η in

Lp
′
(Ω) and let χ ∈ C∞

0 (Ω) such that 0 ≤ χ ≤ 1. Then the following parabolic
problem 

ϕnt − ηnϕnx = λϕn on Ω× (0, T ),

ϕn(±L, t) = 0 on [0, T ),

ϕn(x, T ) = χ(x) on Ω,

admits a unique solution in C∞(Q̄T ): This result is allowed by the classical
theory developed in [8]. Moreover, we have the following assertions

(1) 0 ≤ ϕn ≤ eλ(t−T ) on Ω× (0, T ),

(2) sup
Q̄T

|ϕnx| ≤ M .

Set t = T and ϕ = ϕn in (3.2), to obtain∫
Ω

(u1 − u2)χ +

∫ ∫
Q̄T

(u1 − u2)(η − ηn)ϕnx =

∫
Ω

(u01 − u02)ϕn(0)

+

∫ ∫
Q̄T

((f1 − f2) + λ(u1 − u2))ϕn.

(3.3)

But

|
∫ ∫

QT

(u1 − u2)(η − ηn)ϕnx| ≤ Csup
QT

|ϕnx| ‖ η − ηn ‖Lp
′
(Ω)
‖ u1 − u2 ‖Lp(Ω) .

Then, by passage to the limit, as n −→ +∞, in (3.3), we get∫
Ω

(u1(T )−u2(T ))χ ≤
∫

Ω

(u01−u02)
+e−λT +

∫ ∫
Q̄T

((f1−f2)+λ(u1−u2))
+eλ(s−T ),
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for all χ ∈ C∞0 (Ω) with 0 ≤ χ ≤ 1.
Set, χ(x) = 1 on {x, u1(T ) > u2(T )} and χ = 0 otherwise. We have∫

Ω

(u1(t)− u2(t))
+ ≤

∫
Ω

(u01 − u02)
+ +

∫ ∫
Qt

eλ(s−T )(f1 − f2) + λ(u1 − u2))
+.

Thus, for λ = 0, we deduce∫
Ω

(u1(t)− u2(t))
+ ≤

∫
Ω

(u01 − u02)
+ +

∫ ∫
Qt

(f1 − f2)
+.

Hence

‖ u1(t)− u2(t) ‖L1(Ω)≤‖ u01 − u02 ‖L1(Ω) + ‖ f1 − f2 ‖L1(Qt) .

Remark 8. In the proof of proposition 5 we obtained∫
Ω

(u1(T )−u2(T ))χ ≤
∫

Ω

(u01−u02)
+e−λT +

∫ ∫
Q̄T

((f1−f2)+λ(u1−u2))
+eλ(s−T ),

which is the equation that leads to estimation (3.1) and will also lead to the
point (i) and also to the comparison principle (ii) in the following theorem.

Theorem 3.2. (i) Let u1 and u2 be two solutions of problem (P ) on [0, T ],
associated respectively with initial data u01 and u02. Let K be a lipschitz
constant for f on [−M, M ], with M = max(‖ u1 ‖L∞(QT ), ‖ u2 ‖L∞(QT )).
Then

‖ u1(t)− u2(t) ‖L1(Ω)≤ eKt ‖ u01 − u02 ‖L1(Ω) . (3.4)

(ii) Let u be a subsolution and û a supersolution of problem (P ) with initial
data u0 and û0. If u0 ≤ û0 then we have

u ≤ û.

3.2 Regularization

We begin this paragraph by proving the lipschitz property of the solution
operator of problem (P ), by using the regularizing e�ects results concerning
evolution equations given in [4], which is an important ingredient used to prove
the main regularizing theorem.

Lemma 5. Under hypotheses (H1) and (H2), we have

i) The function t 7→ u(t, u0) is lipschitz continuous from [τ,∞) into L1(Ω)
with constant Kτ independent of u0.
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ii) In the case where p > 2, the function t 7→ φ(∇u(t)) is continuous from
[τ,∞) into L1(Ω), where φ(x) = |x|p−2x.

Proof. (i)Let S(t, u0, f) denotes the solution of problem (P ) at time t. So, by
inequality (3.1) the operator S satis�es

‖ S(t, u01, f1)−S(t, u02, f2) ‖L1(Ω)≤‖ u01−u02 ‖L1(Ω) + ‖ f1−f2 ‖L1(Qt) . (3.5)

On the other hand, it su�ces to verify that λ
1

m−1 S(λt, u0, f) is a solution of
problem (P ) associated with λ

1
m−1 u0 and λ

m
m−1 fλ, to conclude, thanks to the

uniqueness of the solution of problem (P ), that

λ
1

m−1 S(λt, u0, f) = S(t, λ
1

m−1 u0, λ
m

m−1 fλ), λ ≥ 0, (3.6)

where fλ(t)(.) = f(λt)(.) and m = p− 1.
Now by properties (3.5), (3.6) of S and the Lipschitz continuity of f , we get,
by applying theorem 7 of [4], that the solution u of problem (P ) verify, the
following regularizing e�ect of the solution u: for τ > 0, 0 < h ≤ τ and t ≥ 0,
we have

1

h
‖ u(t + τ + h, u0)− u(t + τ, u0) ‖L1(Ω) =

1

τ

(τ

h
‖ u(τ + h, u(t, u0))− u(τ, u(t, u0)) ‖L1(Ω)

)
≤ 1

τ
H(τ, ‖ u(t, u0) ‖L1(Ω)),

where H is a nondecreasing function of its arguments. Moreover, since we
have 0 ≤ u ≤ 1, then ‖ u(t, u0) ‖L1(Ω)≤ measΩ = 2L. So, it follows that
τ−1H(τ, 2L) is a Lipschitz constant for t −→ u(t, u0) on [τ,∞).
(ii) Following [5](in page 1392,1393), one can obtain that ∂

∂t
φε(∇uε) is bounded

in L2(t0,∞, Lp′(Ω)) and from (iv) of lemma 6 we have that φε(∇uε) is bounded
in L∞(0,∞, Lp′(Ω)). Hence by application of corollary 4 of [12] we get the
continuity of the function t → φ(∇u(t)) from [τ,∞) into L1(Ω).

Now, our main regularizing theorem is the following:

Theorem 3.3. Assume that assumptions (H1) and (H2) hold, p > 2 and let
u be the solution of problem (P ). Then for each τ > 0 there exists a constant
Mτ , independent of u0, such that

(i) φ(∇u) ∈ L∞(Ω) for t > τ .

(ii) ‖ φ(∇u) ‖L∞(Ω)≤ Mτ and ess varφ(∇u) ≤ Mτ for t ≥ τ .

To prove this result we shall use the following lemma.
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Lemma 6. Let v(t) be Lipschitz continuous function with constant K, and
w(t), z(t) be continuous functions from [0,∞) into L1(Ω) with

vt = wx + z in D
′
(Ω).

Then w(t) ∈ L∞(Ω) for all t and

ess var w(t) ≤ Kmeas(Ω)+ ‖ z(t) ‖L1(Ω) .

The proof is similar to that of lemma 15 in [2] and we avoid it.
By virtue of lemma 5, we can apply lemma 6 to the equation

ut = (φ(∇u))x + f(u)

which hold in the sense of distributions.
Thus, φ(∇u(t)) ∈ L∞(Ω) for t ≥ τ > 0 and the variation of φ(∇u(t)) is

bounded by Kτ+ ‖ f(u(t)) ‖L1(Ω), which is bounded.
Using corollary 2.4 of [11] we get

‖ φ(∇(u)) ‖L∞(Ω)≤ ess varφ(∇u).

So assertions of theorem 3.3 are hence proved.

3.3 Stabilization

Let p > 2, 0 ≤ u0 ≤ 1 and u = u(t, u0) the solution of problem (P ) associated
with u0. For each τ > 0 de�ne the semiorbit

γτ = {u(t, u0), t ≥ τ}.

According to theorem 3.3, we have γτ (u0) ⊂ Xτ , where Xτ is the metric space
whose elements w ∈ L∞(Ω) satisfy

0 ≤ w ≤ 1, wx ∈ L∞(Ω), ‖ wx ‖L∞(Ω)≤ Mτ and essential variationφ(wx) ≤ Mτ .

Where Mτ is as in theorem 3.3.

Lemma 7. i) The space Xτ equipped with the metric

d(u, v) =‖ u− v ‖L1(Ω) + ‖ (u− v)x ‖Lp(Ω)

is compact.

ii) The semi-orbit γτ is precompact.
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Proof. i) It is clear that Xτ is complete. Moreover Xτ is bounded in W 1,∞(Ω),
and is thus precompact in L1(Ω).
On the other hand the subset {φ(wx), w ∈ Xτ} is bounded in L∞(Ω) and in
variation. Thus, it is precompact in L1(Ω) and then by the L∞-boundedness,
the set {wx, w ∈ Xτ} is precompact in Lp(Ω) for every 1 ≤ p < ∞. Conse-
quently Xτ is compact.
ii) Since γτ ⊂ Xτ which is compact, then (ii) follows.

The following statement is an immediate result of lemma 7.

Corollary 1. i) If (un) ⊂ Xτ and ‖ un − u ‖L1(Ω)→ 0, then u ∈ Xτ and
d(un, u) → 0.

ii) The solution u(., u0) ∈ C((0,∞), X), where X is the space de�ned by

X = {u ∈ L∞(Ω), 0 ≤ u ≤ 1, ux ∈ Lp(Ω)}.

De�ne the w-limit set as

w(u0) = {w ∈ X, u(tn, u0) → w inX, for some sequence (tn) with tn−→
n→∞

∞}.

We have the following

Proposition 6. Assume that hypothesis (H1) and (H2) are satis�ed and that
p > 2, then

i) w(u0) is nonempty and connected in X,

ii) if w ∈ w(u0) then u(t, w) ∈ w(u0) for t > 0.

Proof. i) Since γτ is precompact, then w(u0) is nonempty.
ii)As u(tn, u0) → w in X and so in L1(Ω) we get, by assertion (3.4) of theorem
3.2, that u(t + tn, u0) → u(t, w) in L1(Ω) and thus in X.
Hence, as u(t + tn, u0) = u(t, u(tn, u0)), we get u(t, w) ∈ w(u0).

Now, the main result of this section is the following.

Theorem 3.4. Let hypothesis (H1) and (H2) hold and p > 2. Then w(u0) ⊂
E.

To prove this theorem, we will introduce the function V : X −→ R de�ned
by

V (ϕ) =

∫
Ω

(
1

p
|ϕ′|p − F (ϕ)

)
dx,

where F (r) =
∫ r

0
f(s)ds.

One can easily check that V is continuous and satis�es the following statements
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Lemma 8. under assumptions (H1) and (H2) we have

ut ∈ L2(0,∞, L2(Ω))

and ∫ t

s

∫
Ω

(ut)
2 + V (u(t, u0)) ≤ V (u(s, u0)) for t > s > 0. (3.7)

Proof. For u0 ∈ W 1,p
0 (Ω)∩L∞(Ω), we choose u0n ⊂ C∞

0 (Ω) such that u0n−→
n→∞

u0.

Let un the sequence of solutions of (P ) associated with u0n, we so get that∫ t

s

∫
Ω

(unt)
2 + V (un(t, u0n)) ≤ V (un(s, u0n)),

and by letting n → +∞ we get∫ t

s

∫
Ω

(ut)
2 + V (u(t, u0)) ≤ V (u(s, u0)).

Now, we are ready to prove theorem 3.4

Proof. (of theorem 3.4).
By lemma 8, the function t −→ V (u(t, u0)) is nonincreasing for t > 0. More-
over V is continuous on X, thus we have

V (w) = inf
t>0

V (u(t, u0)) for w ∈ w(u0).

On the other hand, form The assertion (ii) of proposition 6, w(u0) is an in-
variant subset of X, so

V (u(t, w)) = V (w) ∀w ∈ w(u0), ∀t > 0. (3.8)

Then, from (3.8) and (3.7), we can deduce that (u(t, w))t ≡ 0 and thus
u(t, w) = w. This means that w is a solution to problem (P ) and thus satis�es
the following relation ∫

Ω

(|wx|p−2wxϕx + f(w)ϕ) = 0,

with ϕ ∈ C1(Ω̄), ϕ ≥ 0 and ϕ(±L) = 0.
But this implies that ∆pw + f(w) = 0 only in D

′
(Ω). Now, since w ∈ L∞(Ω)

and f is lipschitz, then |wx|p−2wx ∈ C1(Ω̄). Moreover, w = 0 at ±L. Conse-
quently w ∈ E.
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4 Applications

This part is devoted to the study of the stability of some equilibrium solutions
of the motivating example, namely u = 0 and u = q, using the stabilization
result proved above. To this end we begin by de�ning the notion of subsolutions
and supersolutions of problem (P ∗)

De�nition 3. A weak subsolution of problem (P ∗) is a function u ∈ C([−L, L])
for which

∫
Ω
(|u′|p−2u′ϕ′+f(u)ϕ)dx ≥ 0 for all ϕ ∈ C1(Ω̄), ϕ ≥ 0 and ϕ(±L) =

0 and u(±L) ≤ 0.
A weak supersolution is de�ned by reversing the inequality and u(±L) ≥ 0.

Next, let u and ū be respectively a subsolution and a supersolution of
problem (P ∗) and de�ne

[u, ū] = {w ∈ L∞(Ω) ∩W 1,p(Ω), u ≤ w ≤ ū a.e on Ω}

Proposition 7. If u0 ∈ [u, ū] such that (H2) is satis�ed, then

i) u(t, u0) ∈ [u, ū] for all t ≥ 0.
and

ii) w(u0) ⊂ [u, ū] ∩ E.

Proof. To prove (i), we use theorem 3.2 and the de�nition of u and ū which
are time-independent.
The statement (ii) follows immediately from (i) and proposition 6.

Corollary 2. If u0 ∈ [u, ū] such that hypotheses (H2) is satis�ed and
[u, ū] ∩ E = {g} is a singleton, then u(t, u0) → g in X as t →∞.

Now, as examples of application of corollary 2 to problem (P ) where
f(u) = u(1 − u)(a − u), we will determinate some domains of attraction for
some isolated elements of E(L).
Example 1
For p > 2, let L ∈ [L1

p, L
0
p) and choose l such that

max
A

(|ξ1 − L1
p|, |ξN + L1

p|) ≤ l < L,

where

A = {ξ = (ξ1, ξ2, ..., ξN) ∈ RN ,−L ≤ ξ1−L1
p, ξi+L1

p ≤ ξi+1−L1
p, i = 1, ..., N−1, ξN+L1

p ≤ L}

Then

u(x) =

{
q(x, l) if x ∈ [−l, l],

0 if x /∈ [−l, l].
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is a subsolution of (Pe). On the other hand ū ≡ q(0, L) is a supersolution of
(Pe).
So,

lim
t→+∞

u(t, u0) = q(L) for u0 ∈ [u, ū].

The domain of attration for q(., L) is

Example 2
For p > 2, let L ∈ [L1

p, L
0
p) and choose l ∈ [L, L0

p]. Set

ū(x) =

{
p(x, l) if x ∈ [−l, l],

0 if x /∈ [−l, l].

Then ū is a supersolution of (Pe). Also u ≡ 0 is a subsolution of (Pe).
In this case, we have

lim
t→+∞

u(t, u0) = 0 for u0 ∈ [u, ū].

Domain of attraction for O where p > 2 and L ∈ [L1
p, L

0
p)
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