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Abstract

Convex like properties, without vector space structure are intensively
used in the minimax theory Since Ky Fan has proved the first minimax
theorem for concave-convexlike functions, several authors have proposed
other extensions or generalizations for the convexity.

In this paper we propose a survey of the recent studies concerning con-
vexity and invexity in optimization theory. In fact, in the first part we
consider the studies of Hanson (1981), Craven (1986), Giorgi and Mi-
titelu (1993), Jeyakumar (1985), Kaul and Kaur (1985), Martin (1985)
and Caristi, Ferrara and Stefanescu (1999, 2001, 2005) considering some
new examples and remarks.

In the second part we consider the consistent notation of (®, p)-invexity
establishing new properties in optimization theory.
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1 Introduction

A few years later, Hanson (1981) by a seminal paper introduced differentiable
function from R™ into R for which there exists a vector function n(z,u) €
R™such that

f@) = fu) > [n(z,w)]'V f(u) (1)

where V denotes the gradient. The class of functions satisfying (1) were
called invex later by Craven (1981) and actually rappresented an important
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concept in optimization theory because figured as a very broad generalization of
convexity. Craven and Glover (1985) showed that the class of invex functions is
equivalent to the class of functions whose stationary points are global minima.

In a preceeding paper Caristi, Ferrara and Stefanescu [1] introduced some
generalizations of invex functions in a smooth vision of the problem studied.
In fact, let ¢ be a differentiable function on a non-empty open set X CR",
p: X — R"

Definition 1 ¢ is n-invex at point 2° € X if I3 n: X x X — R" such that
() = ¢ (2") = (2,2"), Ve (2"). (2)

pis p-invex on X if 37 : X x X — R" such that Vx,y € X

p(x)—e ) =n,y), Ve(y). (3)
¢ is n-pseudoinvex at point 2° € X if
0 (z,2"), Ve (2”) 20 (4)

for some r € X = ¢ (z) — ¢ (2°) > 0.
¢ is n-quasinvex at point 2° € X if

p(2) —p(2%) <0 (5)
for some z € X = (n(z,2°),Vp (2°)) <0.
Definition 2 ¢ is n-infinvez at point 2° € X if

inf [ (z) — ¢ (z°)] > xieﬂ)go (n(2,2°), Ve (7))

z€Xo

¢ is n-supinvex at point 2° € X if
sup [¢ () — ¢ (¢")] = sup (1 (2,2°) , Vi (). (6)
z€Xp z€Xo

¢ is n-infpseudoinvex at point 2° € X if

o inf (n(z,2%),Ve(2?) >0= inf [p(x)— ¢ (z°)] > 0.

z€X0 zeXo -
¢ is p-supquasiinvex at point 2% € X if

o sup [p(z) — ¢ (a*)] < 0= sup (5 (z,2°), Vo (2°)) < 0.

where X, is a subset of X.
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Proposition 3 ¢ n-invex not implies that ¢ is n—in finvexr and n—supinvex.
As can be seen from the following example:

Example 4 The function 0 : [—1,1] — R defined by 0 (z) = z* is not invex
but if we consider p=0

sup (2° —p*) =1—p* >0 (7)
the function 6 is n — supinver and if assume p = —1
inf (—p®) > inf (—3u%) (8)

then function considered is 1 — in finvezx.

Remark 5 Obuviously, n—int —invexity implies n—inf —peudovexityinvexity
and sup —invexity implies n — sup —quasiivexity.

the above properties will be used in the classical framework of the scalar
optimization problem:

(P) inf f(z),whereXo={z € X|g; () <0, j=12,...m} (9)

z€Xo

where f and g; are differentiable.
Definition 6 The problem (P) is n — inf —sup —invex at y € X, if f is
n —inf —invex with repect to Xy and g;, j =1,2,...,m are n—sup —invexr at
y, with respect to Xo. (P) is n —inf — sup —invex on X if it is n — inf —invex

at every point y € X.

Let (D) the Wolfe dual in X of (P):

(D) sup (f @+ v, <x>> (10)

(z0)eV

where,

V:{(x,U)EXXRT

Vf(x)+ivngj (x):()}. (11)
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In [4] authors will show that (P) is n — inf —sup —invexr on X for some
7, then any Kuhn-Tucker point is an optimum solution of (P) and the weak
duality property holds.

Assuming f and g; differentialble on X, a Kuhn-Tucker point is a pair
(zo,v) € Xo x RT, satisfying the following two condition:

Vf (Io) + Z vngj (ZE()) = 0 (12)

j=1

Z v;9; (w9) =0 (13)

Jj=1

For y € Xy, let us denote by Jy(y) the set of active constraints at y;
Jo(y) ={Jjlg; (y) = 0}.

Theorem 7 Let(zg,v) be any Kuhn-Tucker point of the problem (P). If there
exist some 1, such that f is n — inf —pseudovex at xy with respect to Xy, and
for every j € Jy(x0), g; is n — sup —quasitnvex at y € X with respect to Xo,
then o is an optimum solution of (P).

Corollary 8 Let (zg,v) be any Kuhn-Tucker point of the problem (P). If there
exist some n such that f is n —inf —invex at xy with respect to Xy, and for
every j € Jo(xo), g; is n—sup —invexr aty € X with respect to X, then xg is
an optimum solution of (P).

Corollary 9 Assume that there exist some n such that (P) is n—inf — sup —invex
on X. Then for every Kuhn-Tucker point (zo,v), xq¢ is an optimum solution.

Remark 10 An obvious relaxation of tha above theorem can be obtained weak-
ening the requirements for the contraint functions. In fact, it is sufficient to
assume that

j € J(x0) = Sup (n(x,20),Vg;(20)) <0 (14)

consequently, one obtains:

Corollary 11 Let (zg,v) be any Kuhn-Tucker point of the problem (P). If
there exist some 1 such that the constraint functions satisfy [14] and the ob-
jective function satisfies:
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inf (n(x,z0),Vf(x9)) >0= inf [f(z)— f(x0)] >0 (15)

€ X0 z€Xo

then x( is an optimum solution.

Theorem 12 Assume that there exist somen such that f is n—inf —pseudoinvex
on X and all g; are n — sup —invex on X. Then, for any feasible solution x
of (P) (z € Xy), and for any feasible solution (y,v) of (D) ((y,v) € V), one
has:

f(x) > f(y)+ Z ;95 (y) (16)

Corollary 13 if the problem (P) is n — inf —sup —invex on X for some n
then it has the weak duality property.

Always in [4] Caristi, Ferrara and Stefanescu considering that obtain weaker
invexity-type conditions which are necessary and succient for the sufficiency of
the Kuhn-Tucker conditions.

Martin (1965) showed that if a mathematical programming problem with
linear contraints which delimit a bounded feaisible set is invex, than the ob-
jective function must be convx.

He called the problem (P) Kuhn-Tucker invex on X, if there exist a vector
function n : X x X — R", such that:

fx)=f(y) = n(zy), V)
n(z,y),Vyg;(y)) <0, whenever g; (y) =0, for j=1,2,...,m
(17)

x,y€X0:>{<

Theorem 14 (Martin (1985), Theorem 2.1) Every Kuhn-Tucker point of prob-
lem (P) is a global minimizer if and only if (P) is Kuhn-Tucker inve.

Theorem 15 A Kuhn-Tucker point (z¢,v) is a global minimizer of the prob-
lem (P) if and only if there exist a vector funtion n: X x X — R", such that
(14) and (15) hold.

Proof. The sufficiency follows from Corollary 10 of Theorem 6. For the
necessity one observe that Kuhn-Tucker invexity implies the conditions of the
theorem. m

It is also obvious that,
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Theorem 16 FEvery Kuhn-Tucker point of problem (P) is a global minimizer
if and only if there exist a vector function n : X x X — R", such that f is
n—inf —pseudoinvex (n — inf —invex) on X, with respect to Xy, and, for every
y € Xo, g; is 1 —sup —quasitnvex (n — sup —invex) aty, whenever j € Jo (y).

Finally, let us examine an example to show that our conditions actually
don’t imply convexity.

Example 17 consider the problem:

in)g (—x129) , where, Xy = {I ER*2>0, 11 +2, < 1 } ) (18)
reEX0

obviously, y = (1/2, 1/2) is Kuhn-Tucker point. One can wasily ver-
ify that problem is 1 — inf — sup —invexr at y, with respect Xo, n(z,y) =
(1 — y1,23 — ya).

2 Convexlike and weakly convex like functions

We begin by a brief survey of some properties emerging from the Fan’s con-
vexlike concept. Let X be a nonvoid set, F a family of real-valued functions
defined on X and ¢ € [0, 1].

Definition 18 F' ist — convexlike on X if

Vo, v € X, 3w € X,Vf €F, f(xo) <tf(x1) + (1 —1)f(x2) (19)

Definition 19 F ist — subconvexlike on X if

Vi, 20 € X,Ve > 0,3z, € X,Vf € F, f(z.) <tf(x1)+ (1 —t)f(z2) +¢
(20)

The assertions of the following proposition are obvious:
Proposition 20 If F is t — convexlike (t — subconvexlike) on X, so is:

e a) Any subfamily F’ of F

e b) FU{c}, for any constant function c
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e ¢) The convex hull coF of F
It is also known (see Paeck [6]) that:

Proposition 21 If F is t — convexlike (t — subconvexlike) on X for somet €
(0,1), then there exists a dense subset D(t) of the interval [0, 1], such that F
is s — convexlike (s — subconvexlike) onX, for every s € D(t).

Definition 22 F' is weakly convexlike on X if

Vg, xp € X[Vt €[0,1] ,;g)ffiu]rgf(x) < sup [tf (1) + (1 =1) f(z2)]  (21)

The following implications are obvious:

F is t — convexlike on X, for some t € (0,1) = F is t — subconvexlike on
X, for the same t = F is weakly convexlike on X

The counterpart of a) in Proposition 1 doesn’t hold for the weakly convex-
like families, but the other two assertions are true, as it is shown below.

Proposition 23 If the family F is weakly convexlike on X, so is FU{c}, for
every constant function c .

Proposition 24 If the family F is weakly convexlike on X, so is coF . intro-
duced by a specialized concept.

Definition 25 The ordered finite family F = {f1, f2,..., fn} is sequential
weakly convezlike (s.w.c.) on X if, for every i = 1,2,...,n — 1, the family
{f1, f2,..., f} is weakly convezlike on X, for each f € co{fi+1,..., fn}.

Remark 26 If {f1, f2,..., fn} is sw.c. on X, so is {f1, f2,..., fi, f}, for
every f € co{fi+1,...,fn} andi=1,2,...n—1.

Remark 27 If F = {f1, f2,...,fn} is t — subconvexlike on X, for some
t € (0,1), then every subfamily of coF is weakly convexlike on X, and hence,
Fis saw.c.

Stefanescu in [18] proved that:
Theorem 28 Let F be any family of functions on X. If each finite subfamily

of coF is weakly convexlike on X, then, for every finite subfamily F' of F
exactly one of the following situations occurs:
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dJTe X VfeF, f(T)<O, (22)

3f € coF'\Vx € X, f(x) >0 (23)

We establish below, a slight generalization of the above theorem, that will
allow us to prove a saddle-point theorem for constrained optimization. The
proof of the theorem basically follows the line in the above cited paper. For
the sake of completeness, we will prove first a lemma.

For any family F of real-valued functions on X, denote by X(F) = {z €
X|f(z) <0,Vf e FHX(0) =X).

Lemma 29 (see also [18].) Let F be a finite family of real-valued functions
defined on X and hy,hs : X — R. Assume that

X(FU{hi, hy}) =0 (24)

If FU{hy, he} is weakly convexlike on X, then there exists t € [0, 1], such
that

Now, let T; = {s € [0,1] | shy(x) + (1 — s)he(z) < 0O, for some z €
X(FU{h;}},i = 1,2. One can easily verify that both T} and T3 are open
in [0,1], and 0 € Ty, 1 € T;. Since, by (24), Ty NTy, = (, it follows that
[0, 1]\(T1 U Ty) = 0. Thus, (25) holds for at least one ¢ in [0, 1].

Theorem 30 Assume H = {hy, hs,...,h,} be s.w.c. on X. Then exactly one
of the following two situations occurs:

JE e X, hi(T) <0,i=1,2,....,n (26)

3h € coH,Vx € X, h(x) >0 (27)

Proof. We prove, by induction on n, that (27) holds whenever (26) doesn’t
hold.
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For n = 2, H = {hy, ha} is weakly convexlike. If max;—;2h;(z) > 0,Vz €
X, apply Lemma 16 for F = () and (27) results.

Assume now that the theorem is true for every s.w.c. family of at most
n > 2 functions, and consider H = {hy, hs, ..., h,, + 1} be s.w.c. such that
mazi<i<pirhi(x) > 0,¥x € X. Denote by X' = X({h1,hay....hp_1}). If
X' =10, pick an hg € co{hy, hpi1}-

If X’ =0, pick an hg € co{hy,, hni1}-

If X' # (), then maxi—pni1hi(x) > 0,Vx € X', and by Lemma 16 (for
F = {hy,ha, ..., h,_1}) it follows the existence of hy € co{hy, h,11} such that
ho(xz) > 0,Vx € X'.
In both cases, mazo<i<n—1hi(z) > 0,Vx € X, and since {hq, ha, ..., hy_1, ho} is
s.w.c., it follows by induction that h(z) > 0,Vx € X, for some h € co{hy, ha, ...,
hn—l; ho} CcoH. m

The following corollary results from Theorem (17) and Remark (4).

Corollary 31 If H = {hy, ho,...,h,} is t — subconvexlike on X for some
t € (0,1), then the alternative (26)-(27) holds

3 Saddle-point theorem for constrained opti-
mization.

In [3] Caristi and Ferrara showed that the Lagrange’s Saddle-point inequalities
should be verified by any optimum solution of an optimization problem if the
objective and the constraints functions form a s.w.c. family. The supporting
space could be any set, not endowed with topology or vector space structure.
Particularly, our result holds for discrete optimization.
Let X be any nonvoid set. Consider the constrained optimization problem:

(P) sinf{f(z)|lz € X,gj(x) <0, j=1,2,..,m} (28)

Denoting by g the vector function (gi, go, ..., gm), the associated Lagrange
function L : X x R" — R, is defined by:

Lz, u) = f(x) + (u, g(x)) (29)

Theorem 32 Assume that the family {1, g2, ..., gm, f, ¢} is s.w.c. for every
constant function c. If the Slater’s constraints qualification condition
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(c—¢q):3Fvo € X, gj(x0) <0,7=1,2,...,m (30)

is satisfied, then for every optimum solution Z of (P) there exists u € R’
such that (Z,u) is a saddle-point of L, i.e.

L(z,u) < L(z,u) < L(z,u), Vo € X,Vu € R (31)

Corollary 33 If {g1,92, ., gm, [} is t — subconvexlike on X for some t €
(0,1), then for every optimum solution T of (P), there exists u € R satisfying

(31).

4 (P,p) invexity

We begin by introducing a consistent notation for vector inequalities and for
derivative operators.

In the following, R™ denotes the n—dimensional Euclidean space. If x,y €
R"; then x > y means x; > y; for all © = 1,2, ..., n, while z > y means x; > y;
for alli = 1,2,...,n. An element of R"™! may be regarded as (¢, r) with t € R"
and r € R.

Let ¢ : D C R™ — R be a differentiable (twice dierentiable) function of the
independent variable x; and a € D.

We will denote by V. p,—, the gradient of ¢ at the point a, and V2_p,—,
stands for the matrix formed by the second order derivatives of . When
any confusion is avoided, we will omit the subscript, writing simply V(a)
respectively, VZp(a). In the next definitions, ¢ is a real number and ® is a
real-valued function defined on D x D x R™"!; such that ®(z,a,.) is convex
on R" and ®(z,a,)0,r)) > 0 for every (x,a) € D x D and r € R,

Definition 34 We say that ¢ is (P, p) - invexr at a with respect to X C D, if

p(x) = p(a) = ®(x,a,(Ve(a), p))Vr € X (32)
@ is (®, p) - invex on D if it is (P, p) - invex at a, for every a € D.
Remark 35 If vy is (P, p1) - invex and pq is (P, p2) - invex then \p; + (1 —

Ns is (P, Ap1 + (1 — X)pe-invez, whenever A € [1,0]. in particular if @1 and
o 18 (P, p) - invex with repsect to same ® and p, then so is A1 + (1 — N)ps.
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The following two de ... nitions generalizes (P, p) - invexity.

Definition 36 We say that ¢ is pseudo (®, p) - invex at a with repsect to X,
if whennever ®(z,a,(Ve(a),p)) >0 for some x € X, then ¢ (z) — ¢ (a) > 0.

Definition 37 We say that ¢ is quasi (P, p) - invex at a with repsect to X,
if whennever ¢ (x) — ¢ (a) <0 for some x € X then ®(z,a,(Ve(a),p)) <0

Remark 38 For ®(z,a,(y,a)) = F(x,a,y) + rd?*(za), where F(z,a,.) is
sublinear on R", the definition of (¥, p) - invexity reduces to the definition of

(F, p)-convezity introduced by Preda [13], which in turn generalizes the concepts
of F-convexity ([9]) and p-invexity ([19]).

More comments on the relationships between (®, p) - invexity and invexity
and their earlier extensions are in the next two sections.

5 Optimality conditions

The typical mathematical programming problem

(P) :inf {f (z) |z € Xo,9:(x) <0, =1,2,....,m} (33)
where X is a nonvoid open subset of R", f : X = R, g;: Xo =R, j=

1,2,....,m.
Let X be the set of all feasible solutions of (P);

X = {l' € Xo, g](ilf) <0, j= 1727"'7m} (34)

Everywhere in this paper f and g;, j = 1,2,...,m are assumed to be
differentiable on Xy; and we will refer to a Kuhn-Tucker point of (P) according
to the usual definition.

Definition 39 (a,v) € X x R™ is said to be a Kuhn-Tucker point of the
problem (P) if:

Vfa)+ i v;Vgj(a) =0 (35)
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> v (@) =0 (36)

Denoting by J(a) = {j € {1,2,...,m} |gj(a) =0}, then summation in
(35) and (36) is over J(a).

Now we estabilish the necessity and sufficiency of Kuhn-Tucker conditions
for the optimality in (P) under (@, p) -invexity.

Everywhere in the following, we will assume invexity with respect to the
set X of the feasible solutions of (P), but for the sake of simplicity we will
omit to mention X.

Theorem 40 Let (a,v) be a Kuhn-Tucker point of (P): If f is pseudo (P, p)
-invex at a, and for each j € J(a), g; is quasi (P, p)-inver at a, for some
pos 1, J € J (a) such that po+3_;c ) Vip; = 0, then a is an optimum solution

of (P).

Proof. Set Ay = 1/ (1 Sy Uj) . A\ = Aovj, j = 1,2, ..., m. Obviously.

Z Ajpj = Xopo + Z Ajpj =0 (37)
j€J(a)
and
ANVS(a)+ Y \Vg;(a (38)
Jj€J(a)

Then, it follows from the definition of ® that

0 < @|za [XNVIl@)+ D NVgi(a) . dopot+ D Ny | | <(39)
j€J(a) j€J(a)
A® (z,a,(Vf(a),p)+ Y N®(x,a,(Vg;(a),p2))
JjeJ(a)

for every x € RI”.

Now, let x € X be a feasible solution. Since g;(z) — g;(a) < 0 and g; is
quasi (P, p,)-invex, it results that ® (z,a, (Vyg; (a),p;)) <0, for each j € J(a).
Hence, the above inequalities imply ® (x;a, (Vf (a),po)) > 0 and the pseudo
(@, p)-invexity of f implies f(z) — f(a) >0. m
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Theorem 41 Let a be an optimum solution of (P). Suppose that Slater’s
constraint qualification holds for restrictions in J(a) (i.e. there exists z* € X
such that g;(z*) < 0, for all j € J(a)). If, for each j € J(a), g; is (P, p;)-
invex at a for some p; > 0, then there exists v € R such that (a;v) is a
Kuhn-Tucker point of (P).

Proof. Since f and g; are differentiable, then there exist Fritz-John multipliers
i € R such that:

pV f(a) + Z AjVgj(a) =0 (40)
Z Ajlgi(a) =0 (41)

pED A >0 (42)
j=1

All that we need is to prove that p > 0.
Suppose, by way of contradiction, that 1 = 0. Then jed(a) Aj > 0 from
(42), and we can define p; = A;/ > ) Aj- Obviously > . ;) 1y95 (a) = 0

and D ey iP5 2 0.
Hence, since each g; is (P, p;)-invex,

0 < o 33'*,&, Z 11 <
j€J(a)

> w® (2, a, (Vg (a), py)) < (43)
j€J(a)
> wilg (%) = gj(a))

Jj€J(a)

butd e ja) 1595 (@) = 0 by (41), so that 3=y 1 (g5 (z*) — g5 (a)) <0,
contradicting the above inequalities. m

Remark 42 Unlike Martin’s conditions, where the properties of all functions
involved in the problem, ( f and g;), are defined in respect to the same scale
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function n, our conditions are allowed to be satisfied for different scale func-
tions. In fact, considering different values of p, f and each g; should satisfy
different invexity conditions. Thus in the definitions of Section 4, p should
be interpreted as a parameter, and ® generates a family of functions, one for
each value of p. Similar situation appears in the case of (F, p)-convexity (or
p—invezity), but in that case the sign of p determines explicitly the properties
of the function subjected to such condition. As we can observe in the proof of
Theorem 21 (and in all results bellow), all that we need is that ® (.,.,(0,7)) is
non-negative for some values of r. We have asked this condition to be satisfied
whenever r > 0, but this is a convention which can be replaced by any other
one.
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