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Abstract

In this paper, we consider a SI system with spraying microbial pesti-
cide and releasing the infected pests, the infected pests have the function
similar to the microbial pesticide and can infect the healthy pests, fur-
ther weaken or disable their prey function till death. By applying the
Floquet theorem of linear periodic impulsive equations and the compar-
ison theorem, we show that there exists a globally asymptotically stable
pest eradication periodic solution when the impulsive period is less than
the critical value τmax, we further prove that the system is uniformly
permanent if the impulsive period τ > τmax. Thus, we can use the sta-
bility of the positive periodic solution and its period to control insect
pests at acceptably low levels.
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1. Introduction

Integrated Pest Management (IPM) is a safer, and usually less costly option

for effective pest management. IPM is an approach to solving pest problems

by applying knowledge about the pest to prevent them from damaging crops.

Under an IPM approach, actions are taken to control insects, disease or weed

problems only when their numbers exceed acceptable levels. The concept of
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2328 Zhongyi Xiang

IPM was widely practised during the 1970s and 1980s [1,2,3]. IPM is a long

term management strategy that uses a combination of biological, cultural, and

chemical tactics that reduce pests to tolerable levels, with little cost to grower

and minimal effect on the environment.

However, it is inevitable that IPM may cause pollution to the environment

more or less due to the use of chemical pesticide. Therefore, in the paper

we propose a biological control strategy-controlling the pest by introducing

microbial pesticide and infected pests simultaneously. The microbial pesticide

comes from the insect pathology in these years and becomes an important part

in biological control, which mainly includes virus pesticide, bacteria pesticide,

protozoa pesticide and antibiotic. Among these pesticide, the virus pesticide

and microsporidium have the most remarkable effect for pest control. Research

shows that in the control of Laphygma exigua and Pieris rapae in the lettuce,

tomato, capsicum and chrysanthemum and so on, the virus pesticide is even

better than the bacteria pesticide and chemical pesticide[4]. Compared with

the chemical pesticide, the microbial pesticide has many advantages in the

pest control including: high specificity; high selectivity; no pollution; indus-

trialization available; effective protection of the pest’s natural enemies. The

application shows that the microbial pesticide is an effective, highly infectious

and safe bio-pesticide which can be used in both short-term and long-term

controls and plays an important role in pest management.

2. Model formulation and Natations

For IPM strategy, we combine the biological control and chemical control.

The infectious pests are released periodically every time period τ , meanwhile

periodic spraying the microbial pesticide for susceptible pests. The infected

pests have the function similar to the microbial pesticide and can infect the

healthy pests, further weaken or disable their prey function till death. So we

consider the following impulsive differential equation:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ṡ = rS(1 − S+θI

k
) − βSI2,

İ = βSI2 − dI,

}
t �= nτ,

ΔS = −(μ1 + μ2)S,
ΔI = μ1S − μ3I + p,

}
t = nτ,

(2.1)

where S(t) and I(t) are densities of the susceptible and infectious, respectively,

β > 0 is called the transmission coefficient, d > 0 is the death rate of the

infectious pests. ΔS(t) = S(t+) − S(t), ΔI(t) = I(t+) − I(t). S(t) in the

absence of I(t) grows logistically with carrying capacity k, and with an intrinsic
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birth rate constant r, 0 ≤ μ1 < 1 represents the fraction from susceptible to

infectious due to spraying the microbial pesticide at t = nτ , 0 ≤ μ2 < 1, 0 ≤
μ3 < 1 which represents the fraction of susceptible and infective pests due to

spraying pesticides at t = nτ , respectively, and μ1 + μ2 < 1, p > 0 is the

release amount of the infected pests at t = nτ, n ∈ N, N = {0, 1, 2, · · ·}, τ

is the period of the impulsive effect. That is, we can use a combination of

biological and chemical tactics to eradicate pests or keep the pest population

below the damage level.

In the following, we agree on some notations which will prove useful and

give some definitions.

Lemma 2.1. Suppose x(t) is a solution of (2.1) with x(0+) ≥ 0, then

x(t) ≥ 0 for t ≥ 0, and further x(t) > 0, t ≥ 0 for x(t) > 0.

For convenience, we give some basic properties of the following system:{
İ = −dI, t �= nτ,
�I = −μ3I + p, t = nτ,

(2.2)

We have the following lemma:

Lemma 2.2. System (2.2) has a unique positive periodic solution Ĩ(t) with

period τ and for every solution I(t) of (2.2). |I(t)− Ĩ(t)| → 0 as t → ∞, where

Ĩ(t) = p exp(−d(t−nτ))
1−(1−μ3) exp(−dτ)

, nτ < t ≤ (n + 1)τ, n ∈ N, Ĩ(0+) = p
1−(1−μ3) exp(−dτ)

and

Ĩ(t) is globally asymptotically stable. Hence the solution of (2.2) is

I(t) = (1 − μ3)(Ĩ(0+) − p

1 − (1 − μ3) exp(−dτ)
) exp(−dt) + Ĩ(t).

Lemma 2.3. There exists a constant M > 0, such that S(t) ≤ M, I(t) ≤
M, for each positive solution x(t) = (S(t), I(t)) of (2.1) with all t large enough.

Definition 3.1. System (2.1) is said to be permanent if there exist posi-

tive constants m, M such that each positive solution (S(t), I(t)) of the system

satisfies m ≤ S(t) ≤ M, m ≤ I(t) ≤ M for all t sufficiently large.

3. Stability of the pest-eradication periodic solution

In this section, we study the stability of the pest-eradication periodic solu-

tion as a solution of the full system (2.1).

Theorem 3.1. The pest-eradication periodic solution (0, Ĩ(t)) is globally

asymptotically stable provided

rτ+ln(1−μ1−μ2)− prθ(1 − exp(−dτ))

dk[1 − (1 − μ3) exp(−dτ)]
− p2β(1 − exp(−2dτ))

2d[1 − (1 − μ3) exp(−dτ)]2
< 0.

(3.1)
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Proof. Similar to Theorem 4.1 of Zhang et al.(2003)[5], we can prove the pest-

eradication periodic solution (0, Ĩ(t)) is locally asymptotically, so we omit it.

In the following, we prove the global attractivity. Choose sufficiently small

ε > 0 such that

δ = (1 − μ1 − μ2) exp(
∫ τ

0
(r − rθ

k
(Ĩ(t) − ε) − β(Ĩ(t) − ε)2)dt) < 1.

Noting that İ(t) ≥ −dI(t) as t �= nτ and ΔI(t) ≥ −μ3I(t) + p as t = nτ ,

consider the following impulsive differential equation:{
ẋ(t) = −dx(t), t �= nτ,
Δx(t) = −μ3x(t) + p, t = nτ.

(3.2)

By lemma 2.2, system (3.2) has a globally asymptotically stable positive peri-

odic solution

x̃(t) =
p exp(−u(t − nτ))

1 − exp(−μτ)
= Ĩ(t), nτ < t ≤ (n + 1)τ.

So by the comparison theorem and lemma 2.2, we get

I(t) ≥ x(t) > Ĩ(t) − ε, (3.3)

From system (2.1), we obtain that{
Ṡ(t) ≤ S(t)(r − rθ

k
(Ĩ(t) − ε) − β(Ĩ(t) − ε)2), t �= nτ,

ΔS(t) = −(μ1 + μ2)S(t), t = nτ.
(3.4)

Integrating (3.4) on (nτ, (n + 1)τ ], which yields

S((n + 1)τ+) = S(nτ+) exp(
∫ (n+1)τ
nτ (r − rθ

k
(Ĩ(t) − ε) − β(Ĩ(t) − ε)2)dt)

= (1 − μ1 − μ2)S(nτ) exp(
∫ (n+1)τ
nτ (r − rθ

k
(Ĩ(t) − ε) − β(Ĩ(t) − ε)2)dt)

= S(nτ)δ.
(3.5)

Thus, S(nτ) ≤ S(0+)δn and S(nτ) → 0 as n → ∞. Therefore, S(t) → 0 as

n → ∞, since 0 < S(t) < (1 − μ1 − μ2)S(nτ) exp(rτ) for nτ < t ≤ (n + 1)τ ,

Next, we prove that I(t) → Ĩ(t) as t → ∞. for sufficiently small 0 < ε <
d

βM
, there exists a T1 > 0 such that 0 < S(t) < ε for all t > T1. From system

(2.1), we have {
İ(t) ≤ (βεM − d)I(t), t �= nτ,
ΔI(t) ≤ μ1ε − μ3I(t) + p, t = nτ,

(3.6)

considering the following comparison system{
ẏ(t) = (βεM − d)y(t), t �= nτ,
Δy(t) = μ1ε − μ3y(t) + p, t = nτ.

(3.7)
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By lemma 2.2, system (3.7) has a positive periodic solution

ỹ(t) =
(μ1ε + p) exp(−(d − βεM)(t − nτ))

1 − (1 − μ3) exp(−(d − βεM)τ)
, nτ < t ≤ (n + 1)τ,

which is globally asymptotically stable. Thus, for sufficiently small ε1 > 0,

there exists a T2 > T1 such that

I(t) ≤ y(t) < ỹ(t) + ε1. (3.8)

Combining (3.3) and (3.8), we obtain Ĩ(t) − ε < I(t) < ỹ(t) + ε1 for t large

enough, let ε, ε1 → 0, we get ỹ(t) → Ĩ(t), then I(t) → Ĩ(t) as t → ∞. This

completes the proof.

4. Permanence

Theorem 4.1. System (2.1) is uniformly permanent if

rτ− prθ(1 − exp(−dτ))

dk[1 − (1 − μ3) exp(−dτ)]
− p2β(1 − exp(−2dτ))

2d[1 − (1 − μ3) exp(−dτ)]2
> − ln(1−μ1−μ2).

(5.1)

Proof. Suppose x(t) = (S(t), I(t)) is a solution of (2.1) with x(t) > 0,

from lemma 2.3, we may assume S(t) ≤ M, I(t) ≤ M and M > ( r
β
)

1
2 , for t

large enough. We may assume S(t) ≤ M, I(t) ≤ M for t ≥ 0.

Let ζ =
p exp(−dτ)

1 − (1 − μ3) exp(−dτ)
− ε2 > 0, where ε2 > 0 sufficiently small.

According to lemma 2.2, we have I(t) > ζ for t large enough. So, if we can

find positive number ξ > 0, such that S(t) ≥ ξ for t large enough, then our

aim is obtained.

Next, we focus on finding ξ > 0 following two steps.

Step I: If (4.1) holds true, we can choose 0 < m1 < d
βM

and ε3 > 0 small

enough such that δ1 = (1−μ1−μ2) exp(
∫ (n+1)τ
nτ (r− rm1

k
− rθ

k
(Ĩ(t)+ε3)−β(Ĩ(t)+

ε3)
2)dt) > 1, we will prove there exist a t1 ∈ (0,∞), such that S(t1) ≥ m1.

Otherwise S(t) < m1 for all t > 0. From system (2.1), we obtain that{
İ(t) ≤ (βm1M − d)I(t), t �= nτ,
�I(t) ≤ μ1m1 − μ3I(t) + p, t = nτ.

(4.2)

According the comparison theorem, there exists a T3 > 0 such that

I(t) ≤ z(t) < z̃(t) + ε3, (4.3)
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for t > T3, where z̃(t) = (μ1m1+p) exp(−(d−βm1M)(t−nτ))
1−(1−μ3) exp(−(d−βm1M)τ)

, nτ < t ≤ (n + 1)τ. Thus{
Ṡ(t) ≥ S(t)(r − rm1

k
− rθ

k
(Ĩ(t) + ε3) − β(Ĩ(t) + ε3)

2), t �= nτ,
ΔS(t) = −(μ1 + μ2)S(t), t = nτ,

(4.4)

for t > T3, integrating (4.4) on (nτ, (n+1)τ ], n ≥ N1, here, N1 is a nonnegative

integer and N1τ ≥ T3, then we obtain

S((n + 1)τ) ≥ S(nτ)(1 − μ1 − μ2) exp(
∫ (n+1)τ
nτ (r − rm1

k
− rθ

k
(Ĩ(t) + ε3)

−β(Ĩ(t) + ε3)
2)dt) = S(nτ)δ1.

Then S((N1 + k)τ) ≥ S(N1τ)δk
1 → ∞, k → ∞, which is a contradiction to

S(t) < m1 for all t > 0. Hence there exists a t1 > 0 such that S(t1) ≥ m1.

Step II :

If S(t) ≥ m1 for all t ≥ t1, then our aim is obtained. Otherwise S(t) < m1

for some t ≥ t1, setting t∗ = inf
t>t1

{S(t) < m1}, in this case S(t) ≥ m1 for

t ∈ [t1, t
∗) and (1 − μ1 − μ2)m1 ≤ S(t∗

+
) = (1 − μ1 − μ2)S(t∗) < m1. Let

T4 = n2τ + n3τ, where n2 = n′
2 + n′′

2, n′
2, n

′′
2 and n3 satisfy the following

inequalities:

n′
2τ > − 1

d − βMm1

ln
ε3

(M + p + μ1m1)(1 − μ3)
,

(1 − μ1 − μ2)
n2 exp(ηn2τ)δn3

1 > 1,

where η = (r − rm1

k
− rθ

k
M − βM2) < 0. We claim that there must be exist

a time t′1 ∈ (t∗, t∗ + T4) such that S(t′1) ≥ m1, if it is not true, i.e. S(t) <

m1, t ∈ (t∗, t∗ + T4), similar to the analysis before, we consider system (4.3)

with initial value z(t∗
+
) = I(t∗

+
) ≥ 0, by lemma 2.2, we have

z(t) = (1−μ3)(z(t∗
+
)− p+μ1m1

1−(1−μ3) exp(−(d−βMm1)τ)
) exp(−(d−βMm1)(t−t∗))+

z̃1(t) for t ∈ (nτ, (n + 1)τ ], n1 ≤ n ≤ n1 + n2 + n3. Then

|z(t)− z̃(t)| < (1− μ3)(M + p + μ1m1) exp(−(d− βMm1))(t− n1τ)) < ε3,

and I(t) ≤ z(t) < z̃(t)+ε3 for t∗+n′
2τ ≤ t ≤ t∗+T4. which implies that system

(4.4) holds for [t∗ + n2τ, t
∗ + T4], integrating system (4.4) on this interval, we

have

S((n1 + n2 + n3)τ) ≥ S((n1 + n2)τ)δn3
1 . (4.5)

In addition, we have{
Ṡ(t) ≥ S(t)(r − rm1

k
− rθ

k
M − βM2) = ηS(t),

Δx1(t) = −E1x1(t).
(4.6)

Integrating system (4.6) on this interval [t∗, (n1 + n2)τ ], which yields

x1((n1 + n2)τ) ≥ m1(1 − μ1 − μ2)
n2 exp(ηn2τ), (4.7)
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combining (4.5) and (4.7), we have

S((n1 + n2 + n3)τ) ≥ m1(1 − μ1 − μ2)
n2 exp(ηn2τ)δn3

1 > m1,

which is a contradiction, so there exists a time t′1 ∈ [t∗, t∗ + T4] such that

S(t′1) ≥ m1, let t̂ = inft≥t∗{S(t) ≥ m1}, since 0 < μ1 + μ2 < 1, S(nτ+) =

(1 − μ1 − μ2)S(nτ) < S(nτ) and S(t) < m1, t ∈ (t∗, t̂). Thus, S(t̂) = m1,

suppose t ∈ (t∗+(l−1)τ, t∗+ lτ ] ⊂ (t∗, t̂], l is a positive integer and l ≤ n2+n3,

from system (4.6), we have

S(t) ≥ (1 − μ1 − μ2)
lm1 exp(lητ) ≥ (1 − μ1 − μ2)

n2+n3m1 exp((n2 + n3)ητ)
Δ
= ξ

for t > t̂. The same arguments can be continued since S(t̂) ≥ m1. Hence

S(t) ≥ ξ for all t > t1. The proof is complete.

5. Discussion

In this paper, we have investigated the dynamic behavior of a pest man-

agement model with impulsive spraying microbial pesticides and releasing in-

fected pests tactics. The infected pests have function similar to the microbial

pesticide and can infect the healthy pests. We have shown that there ex-

ists an asymptotically stable the susceptible pest-eradication periodic solution

if impulsive period is less than some threshold. When the stability of pest-

eradication periodic solution is lost, system (2.1) is permanent, which is in

line with reality from a biological point of view. Now we can compare validity

of our impulsive control strategy with the classical methods (only biological

control or chemical control). If μ1 = μ2 = μ3 = 0, that is, we only choose the

biological control, we can obtain that τ0 is the threshold and τmax > τ0, which

implies that we must release more infected pest to eradicate the pests. If p = 0,

that is, there is no periodic releasing infective pests, so we can easily obtain

that τ1 = −1
r
ln(1 − μ1 − μ2) is the threshold and τmax > τ1, it is obviously,

impulsive releasing pests may lengthen the period of spraying pesticides and

therefore reduce the cost of pests control.
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