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Abstract

In many practical situations in which the only information we have
about the quantity z is that its value is within an interval [z,7], a rea-
sonable estimate for this quantity is the geometric mean of the bounds
vz - T. In this paper, we provide a new justification for this geometric
mean heuristic.
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1 Formulation of the Problem

In many practical applications, we only know the bounds on a quantity x, and
we need to make a reasonable estimate based on these bounds. In other words,
if we only know the interval [z, Z| of possible values of z, and we want to select
a single reasonable estimate for x, which value from the interval [z, 7] shall we
select?

Due to the practicality of this problem, it is important to be able to select
a reasonable estimate, and it is also important to teach students how to make
these estimations.

It turns out that in many practical situations, the geometric mean \/z - T
is a reasonable estimate for z; see, e.g., [1, 5]. How can we explain the success
of this heuristic?

In this paper, we provide a new justification for this geometric mean heuris-
tic.
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2 Example

Before we proceed with a new justification, let us give one example where this

heuristic works well. This example is related to measurements; see, e.g., [2].
Measurements are never 100% accurate. In general, the result Z of measur-

ing the value of a physical quantity z is different from the actual (unknown)

value of this quantity. In other words, the measurement error Az © is,
in general, different from 0.

Usually, there are many different sources of the measurement error. Let us
denote by n the number of such sources. Then, the overall measurement error
Ax can be described as the sum of the measurement errors coming from these
n sources:

Ar =0x1+ ...+ 0x,.

Often, we do not have much information about the measurement error compo-
nents dx;; we only know the upper bound d on the values of these components,
i.e., we only know that |dx;| < § for all i.

What is the resulting estimate A for the absolute value |Az| of the overall
measurement error Az? The worst-case estimate A comes from the case when
each of the components dx; attains its largest possible value §. In this case,
the overall measurement error attains the largest possible value A = n - 6.

What is the smallest possible value A of the (absolute value of the) overall
measurement error? From the purely mathematical viewpoint, we can have
dx; = 0 for all 7 and thus, Ax = 0. However, as we have mentioned, from the
physical viewpoint, the situation with no measurement errors is not realistic
at all. In other words, at least of the error components has to be non-zero,
and if there are many of these components, at least one of them should take
the value close to its upper bound ¢. Thus, a natural lower bound comes from
the situation when one of the error components has the value dx; = ¢ and all
the others are Os. In this case, we have Az = ¢, so we set A = 0.

Both the upper bound A and the lower bound A are not very probable:

e the lower bound A requires that many error components are almost zeros,
while

e the upper bound A requires that all the error components are as large
as possible.

A reasonable estimate should be somewhere in between.

How can we get such a reasonable estimate? Since we do not have any in-
formation about the probabilities of different measurement errors 6; € [—A, A
or about the dependence between different measurement errors, it is reason-
able to assume that every error component is uniformly distributed on the
corresponding interval, and that different error components are independent
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random variables. Under this assumption, the overall measurement error is
the sum of n identically distributed independent random variables dz;. It is
known that, due to the Central Limit Theorem (see, e.g., [3]), for large n, the
distribution of this sum is close to Gaussian.

To describe this Gaussian distribution, we need to know its sum and its
variance. The mean of the sum of several independent random variables is the
sum of their means, and the variance is equal to the sum of their variances.
For each variable ¢; uniformly distributed on the interval [—d,4], the mean is

1
0, and the variance is equal to 3 .62, Thus, the sum Az is normally distributed

1
with 0 mean and variance V =n - 3 62,

With a high probability of 99.9%, we can conclude that the actual value Ax
differs from the mean 0 by no more than three standard deviations 3-0 = 3VV.
Thus, the reasonable upper bound A on |Azx| is the value

Azawméwz¢5waa

Almost exactly this same value comes from applying the geometric mean
heuristic to the values A = and A =n - §:

A=xA\/A-A=\/6-(n-6)=+n-é.

3 Formalization of the General Problem
We want to be able, given the bounds z and T, to produce a value x € [z, 7]
which depends on these bounds. Let us depend an estimate corresponding to
these bounds by f(x,Z). In terms of this notation, we must find a function
f(z,7) which has the property

< f(z,7) <7 (1)

for all x and Z. Thus, we arrive at the following definition.

Definition 3.1 By an estimation function we mean a function f(z,T)
which s defined for all pairs of real numbers x > 0 and T > 0 for which
x < T and which satisfies the property for all x < T:

z < f(z,7) < 7. (2)



2338 O. Kosheleva and V. Kreinovich

4 First Requirement: Scale-Invariance

Our first requirement is related to the fact that the numerical values of a
physical quantity usually depends on the choice of the measuring unit. For
example, the same distance between the two cities has different numerical
values when expressed in miles or in kilometers.

Both values represent the exact same distance — or, in the general case,
the same quantity. It is therefore reasonable to require that our estimate does
not depend on the choice of the measuring unit. In other words, our estimate
f(z, %) should be scale-invariant in the sense that it should not depend on the
scale used for measuring the corresponding quantity.

Let us describe this requirement in precise terms. Let us assume that z
and T described the numerical values of the lower and upper bounds for x as
expressed in the original units. In this case, the estimate for = takes the form
f(z,T).

Instead of using the original measuring unit, for every real number A > 0,
we can select a new unit which is A times smaller than the original one. In the
new units, all numerical values are A times larger than in the original units.
Thus, in the new units, the lower and upper bounds on the quantity x takes
the form A -z and \-z. Thus, when applied to the bounds as described in the
new units, our estimate f leads to the value f(\-z, A - T).

Our requirement is that this estimate should be the same as the original
estimate f(x,T), but expressed in the new units. Describing the estimate
f(z,7) in the new units means multiplying its numerical value by A, which
results in the new numerical value A - f(z, 7). Our requirements means that
this value must coincide with the estimate f(\-z, A -¥) obtained by applying
our heuristic to the new units.

Thus, we arrive at the following definition.

Definition 4.1 We say that an estimation function f(x,Z) is scale-
invariant if for every x < T and for every A > 0, we have

fOO -z, A7) =\ f(z,7). (3)

5 Second Requirement: Dependence Symme-
try

The second requirement is related to the fact that many physical properties are
not, strictly speaking, directly measurable, they describe the relation between
two different quantities. Let us give a few examples to explain what we have
in mind:
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The mass m describes how the force f depends on the acceleration a:
f=m-a.

The density p describes how the mass m depends on the volume V':

m=p-V.

The velocity v describes how the distance d depends on time: d = v - t.

The electric resistance R describes how the voltage V' depends on the
current I: V =1-R.

More generally, in many cases, the quantity x describes how a quantity
depends on a quantity xs: 1 = x - 5. Once we know the value of x5, this
formula enables us to find the corresponding value of z;.

In some case, we face an opposite problem: we know x; and we want to

know x,. In this case, the same physical law can be described as a dependence

def 1
of x9 on x1: 9 =y - x1, where y = —.

x
For example, if we know the travel time ¢, then, to find the distance d, we
can use the formula d = v - t. Vice versa, if we know the distance, then, to

1
find the time, we can use the formula ¢t = s-d, where the value s L~ is called
v

slowness; see, e.g., [4].
Similarly, if we know the current I, then we can determine the voltage V'
by using the formula V' = R - I. Vice versa, if we know the voltage, then, to
of 1.
find the current, we can use the formula I = G -V, where G aof = is called

conductance.
In general, it is reasonable to require that the estimation procedure f(z,7)
is symmetric in the sense that it leads to the exact same result whether we
1
apply it to the original quantity x or to the reciprocal quantity y = —. Let us
x
formulate this requirement in precise terms.
In the original form, the bounds on = are x and T, so the procedure f
results in the value z = f(z, ).
The new quantity y = — is a decreasing function of x. Thus, the smallest

x
possible value y of y is attained when x takes the largest possible value r =7,
and the largest possible value 7 of y is attained when x takes the smallest

. For these new bound,

=] =

possible value £ = z. In other words, y = — and §y =
= T

the procedure f leads to the estimate



2340 O. Kosheleva and V. Kreinovich

1
This estimate corresponds to the value x = —. Our dependence symmetry

requirement means that this value x must coincide with the original estimate.
Thus, we arrive at the following definition.

Definition 5.1 We say that an estimation function f(z,T) is dependence-
symmetric if for every x < T, we have

! = J(z,7).
@_f(_a ) (4>

— )
Tz

Proposition 5.2 There exists one and only one estimation function which
is both scale-invariant and dependence-symmetric: the function f(z,T) =

T-T.

Thus, we have indeed justified the geometric mean heuristic.

6 Proof

One can easily check that the geometric mean function f(z,7) is both scale-
invariant and dependence-symmetric. Thus, to complete the proof, it is suf-
ficient to prove that if an estimation function f(z,T) is scale-invariant and
dependence-symmetric, then it coincides with the geometric mean.

Indeed, since the function f(z,7) is scale-invariant, it satisfies the property
(3) for all z, Z, and A. Dividing both sides of this equality by A, we conclude

that
1

f(g,f)zxqf()\-g,)\-f). (5)

, we conclude that

IS

This equality holds for every A. In particular, for A =

fem =z 7 (15), )

We now want to use the dependence symmetry property. For the property
y = 1/x, we similarly have

rwm =y s (1 g) | 7)

1
and § = — into this formula, we conclude that

SN

Substituting y =

kﬁ
A/~
Sl
= | =
~
I

8l —
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(4)-4062)

(10)

or, equivalently,

Thus,

Because of (6) and (10), the dependence symmetry condition (4) takes the
form B
T "
o (1, f)
Z

Moving terms f (1, f) into the left-hand side and all other terms into the
x

right-hand side, we conclude that

F(12) -2 o

f (19 - Z (13)

Substituting this expression (13) into the formula (6), we get

f(g,f):@\gz z-T. (14)

The proposition is proven.
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