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Abstract
In his unpublished lectures on general algebra, a well-known alge-
braist D. K. Faddeev expressed a belief that every true mathematical
statement can be generalized in such a way that it becomes trivial. To
the best of our knowledge, this belief has never been formalized before.

In this short paper, we provide a simple formalization (and proof) of
this belief.
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1 D. K. Faddeev’s Belief

In the 1970s, I had a privilege of attending several lectures on general algebra
given by a well-known Russian algebraist Dmitry Konstantinovich Faddeev
[1, 5]. One of his goals was to help mathematicians and computer scientists
appreciate the usefulness of algebraic methods. He started with several ex-
amples of specific mathematical and computational problems about matrices,
operations, functions, etc., and showed how these problems become easier to
solve when reformulated in pure algebraic terms, in terms of the corresponding
algebraic structures (groups, rings, fields, algebras, etc.).

Based on these examples, he then expressed a general belief that any true
mathematical statement can be generalized in such a way that it becomes
practically trivial.
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For D. K. Faddeev and his students, this belief justified a useful heuristic: if
a problem turns out to be too hard to solve, let us try to find a generalization.
However, to the best of our knowledge, this heuristic belief has never before
been formalized.

In this paper, we provide a simple formalization of D. K. Faddeev’s belief,
a formalization which makes it a provable theorem.

2 Towards Formalization

Let us start with a statement F'. We believe that this statement is true, and
that it is provable in some formal system S (e.g., in ZF set theory). Our
objective is to looks for such a proof.

In these terms, D. K. Faddeev’s belief states that it is possible to find
easy-to-prove (“trivial”, in mathematical terms) more general statement from
which F follows. Intuitively, the existence of such a “more general statement”
means the following.

3 For This Formalization, We Need a General
Class of Objects

First, we need to describe a general class of objects t (groups, rings, fields,
etc.); such objects are described by a property P(t).

Comment. In practice, we usually have several different conditions
Pi(t),..., Py(t) which characterize a given type of structures. In this case,
we take their conjunction P;(t) & ... & Py(t) as the desired property P(t).

4 We Need a General Result

Second, we need to have an easy-to-prove general theorem that every object
t of the above type has some general property. We will denote this general
property by G(t), so the desired formula takes the form Vt (P(t) — G(t)).

5 The Original Statement Must Easily Follow
from a Particular Case of the General Result

Third, we need to have an easy proof that the original statement F' follows
from G(to) for an appropriate object .

This object ty must satisfy the property P, and we must make sure that
the corresponding statement P(ty) is also easy to prove.
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6 What is Trivial: Towards Formalization

To complete our formalization, we need to explain what “trivial” (easy-to-
prove) means. Here is where algorithms actually come in (usually, rather
implicitly).

Intuitively, a class of statements is “trivial” if, given a statement from
this class, we can easily tell whether this statement is true or false. This
“easily tell” cannot rely on ingenious ideas: otherwise, it would not be trivial.
For example, solving linear equations is trivial, solving quadratic equations is
trivial. In other words, this solution must come from an algorithm — and this
algorithm has to be easy-to-apply.

For example, it is known that there is an algorithm which decides all first
order formulas of the theory of real numbers with equality, inequality, addi-
tion, and multiplication; see, e.g., [2, 7, 8]. However, since this algorithm is
non-trivial (requires doubly exponential time), mathematicians rarely call the
corresponding problems trivial.

We will say that an algorithm is trivial, e.g., if it requires linear time,
i.e., time bounded by a linear function of the length n of the input formula:
t(n) < C - n. Of course, strictly speaking, a linear-time algorithm can require
time ¢(n) = 10%° - n, in which case it is linear-time but not practically useful
(and clearly not trivial). However, as we will see from the proof, in our case,
the corresponding linear-time algorithm will indeed be trivial.

Now, we are ready for the formal definitions.

Definition 6.1

o We say that an algorithm U is an easy-proof algorithm if it always fin-
ishes in linear time returning “true”, “false”, or “unknown”, with the
following two properties:

— if U(F) returns “true”, then F is a provable formula;
— if U(F) returns “false”, then F is a negation of the provable for-

mula.

e We say that a formula F is U-trivial if U(F) returns “true”.

Definition 6.2 Let U be an easy-proof algorithm. We say that a formula F'
is U-generalizable to be trivial if there exist an object to and formulas P(t) and
G(t) for which the following three statements are U-trivial: Yt (P(t) — G(t)),
P(ty), and G(ty) — F.

Proposition 6.3 There exists an easy-proof algorithm U for which every
formula F' s provable if and only if it is U-generalizable to be trivial.
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7 Proof

1°. If F is U-generalizable to be trivial, this means that the above three
statements are provable. From V¢ (P(t) — G(t)) and P(ty), we conclude that
G(to) is provable. From this and from the fact that the implication G(ty) — F
is provable, we conclude that F' is provable.

2°. Vice versa, let us assume that F' is provable, i.e., that there exists a formal
step-by-step proof ty of the statement F. Then:

e for every ¢, we denote the statement that ¢ is a proof by P(t);

e for every proof t, we denote the statement which is proven in this proof
by G(t); and

e we denote the given proof of F' by t.

Let us show that this selection makes the formula F' U-trivial.

2.1°. In a formal step-by-step proof, we start with axioms of the given formal
system, and we apply rules to transform previously proven statements into
new ones (and the proof must contain detailed explanations of what exactly
rule we apply and how).

Given a text, it is easy to check whether this text is indeed a formal step-
by-step proof: we just need to check that the first formulas are indeed axioms,
and that every consequent formula is indeed obtained from the previous ones
by following the rule claimed in this text.

This proof-checking procedure is easy, so checking P(t) is easy: it can be
definitely done in linear time.

2.2°. The fact Vt (P(t) — G(t)) that every proof leads to a correct result is
also easy to prove, in constant time (e.g., by induction over the length of the
proof).

2.3°. Finally, the fact that P(ty) implies F' follows from the fact that ¢, is
actually the proof of F'.

The proposition is proven.

8 Discussion

First, it is important to remember that provability in a theory usually cannot
be described within the same theory, so the above generalization requires a
theory which is logically stronger than the original one; see, e.g., [3, 4, 6]. This
is OK, since a generalization is, in general, stronger than the original theory.
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Second, our objective was to formalize and verify D. K. Faddeev’s belief.
So now, we have a new justification of the natural heuristic originated by this
belief: if a statement is too hard to proof, try to generalize it.

It is worth mentioning that while heuristically, this idea is helpful, theoret-
ically — as we can see from the above simple proof — finding a generalization
is as difficult as proving the original statement.
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