
Applied Mathematical Sciences, Vol. 3, 2009, no. 48, 2349 - 2358

Nontrivial Solutions for Nonlinear Higher Order

Multi-Point Boundary Value Problem on Time Scales

with All Derivatives

Jian Wang and Fuyi Xu

School of Science
Shandong University of Technology, Zibo, Shandong

255049, People’s Republic of China

Abstract

In this paper, we consider the existence of nontrivial solutions for
nonlinear higher order multi-point boundary value problem on time
scales with all derivatives. In the case where a nonlinearity may change
sign and contains all derivatives, several sufficient conditions for the
existence of nontrivial solution are obtained by using Leray-Schauder
nonlinear alternative under certain growth conditions on the nonlinear-
ity. As an application, some examples to demonstrate our results are
given.
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1 Introduction

A time scale T is a nonempty closed subset of R. We make the blanket
assumption that 0, T are point in T. By an internal (0, T ), we always mean
the intersection of the real internal (0, T ) with the given time scale, that is (0,
T)

⋂
T. The theory of dynamical systems on time scales is undergoing rapid

development as it provides a unifying structure for the study of differential
equations in the continuous case and the study of finite difference equations in
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the discrete case; Here, two-point boundary-value problems have been exten-
sively studied; see [2, 4, 9-12, 14, 16-19] and the references therein.

In [2], Anderson discussed the following dynamic equation on time scales:

⎧⎨
⎩

uΔ∇(t) + a(t)f(u(t)) = 0, t ∈ (0, T ),

u(0) = 0, αu(η) = u(T ).

He obtained some results for the existence of one positive solution of the prob-

lem based on the limits f0 = lim
u→0+

f(u)

u
and f∞ = lim

u→∞
f(u)

u
as well as existence

of at least three positive solutions.
In [19], Sun considered the following third-order two-point boundary value

problem on time scales:
⎧⎨
⎩

uΔΔΔ(t) + f(t, u(t), uΔΔ(t)) = 0, t ∈ [a, σ(b)],

u(a) = A, u(σb) = B, uΔΔ(a) = C,

where a, b ∈ T and a < b. Some existence criteria of solution and positive
solution are established by using Leray-Schauder fixed point theorem.

All the above works were done under the assumption that the nonlinear
term is nonnegative. However, little work has been done to the existence of
positive solutions for boundary value problem with nonlinear term f being
allowed to change sign. Especially, to date no paper has appeared in the
literature which discusses the nonlinear higher order multi-point boundary
value problem on time scales with all derivatives when nonlinearity in the
differential equation may change sign.

In this paper, we are concerned with the existence of nontrivial solution of
the following higher order multi-point boundary value problem on time scales
with all derivatives:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uΔn
(t) + f(t, u(t), uΔ(t) · · · , uΔn−2

(t), uΔn−1
(t)) = 0, t ∈ (0, T ),

u(0) = uΔ(0) = · · · = uΔn−2
(0) = 0, uΔn−1

(T ) =
m−2∑
i=1

kiu
Δn−1

(ξi),
(1.1)

where ξi ∈ (0, ρ(T )), ki ≥ 0, 0 <
∑m−2

i=1 ki < 1, f ∈ Cld([0, T ] × Rn, R), R =
(−∞, +∞). By using Leray- Schauder nonlinear alternative, we study the
existence of nontrivial solutions of multi-point boundary value problem (1.1).
The interesting point of this paper is the nonlinear term f with all derivatives
may change sign.

The aim of this paper is to establish some simple criteria for the existence
of nontrivial solution of the boundary value problem (1.1). Our results are
new and different from those of [2, 11, 12, 14]. Particularly, we do not require
any monotonicity and nonnegative on f , which was essential for the technique
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used in [2, 11, 12, 14]. And our conditions are given in integral expression,
they are easy to check.

We will always suppose that the following conditions are satisfied through-
out this paper.

(H1) f ∈ Cld([0, T ] × Rn, R), R = (−∞, +∞);
(H2) ξi ∈ (0, ρ(T )), ki > 0, 0 <

∑m−2
i=1 ki < 1.

2 Preliminaries and Lemmas

For convenience, we list the following definitions which can be found in [1,
3, 5, 6].
Definition 2.1. A time scale T is a nonempty closed subset of real numbers
R. For t < supT and r > inf T, define the forward jump operator σ and
backward jump operator ρ, respectively,

σ(t) = inf{τ ∈ T | τ > t} ∈ T,

ρ(r) = sup{τ ∈ T | τ < r} ∈ T.

for all t, r ∈ T. If σ(t) > t, t is said to be right scattered, and if ρ(r) < r, r is
said to be left scattered; if σ(t) = t, t is said to be right dense, and if ρ(r) = r,
r is said to be left dense.
Definition 2.2. Fix t ∈ T. Let f : T −→ R. the delta derivative of f at
the point t is defined to be the number fΔ(t) (provided it exists), with the
property that, for each ε > 0, there is a neighborhood U of t such that

|f(σ(t)) − f(s) − fΔ(t)(σ(t) − s)| ≤ ε|σ(t) − s|,

for all s ∈ U . Define fΔn
(t) to be the delta derivative of fΔn−1

(t), i.e., fΔn
(t) =

(fΔn−1
(t))Δ.

Definition 2.3. A function f is left-dense continuous (i.e. ld-continuous), if
f is continuous at each left-dense point in T and its right-sided limit exists at
each right-dense point in T. If FΔ(t) = f(t), then define the delta integral by

∫ t

a
f(s)Δs = F (t) − F (a).

For the rest of this article, we denote the set of left-dense continuous func-
tions from [0, T ]×R to R and [0, T ] to R by Cld([0, T ]×R, R) and Cld([0, T ], R),
respectively.

Let Cld([0, T ], R) be endowed with the ordering x ≤ y if x(t) ≤ y(t) for all
t ∈ [0, T ], and ‖u‖ = max

t∈[0,T ]
|u(t)| is defined as usual by maximum norm. The

Cld([0, T ], R) is a Banach space.
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Lemma 2.1. Supposed (H2) holds, if y ∈ Cld([0, T ], R), then the problem

vΔ(t) + y(t) = 0, t ∈ (0, T ), (2.1)

v(T ) =
m−2∑
i=1

kiv(ξi), (2.2)

has unique solution:

v(t) = −
∫ t

0
y(s)Δs +

1

1 −
m−2∑
i=1

ki

∫ T

0
y(s)Δs − 1

1 −
m−2∑
i=1

ki

m−2∑
i=1

ki

∫ ξi

0
y(s)Δs.

Proof. From (2.1), we have

v(t) = −
∫ t

0
y(s)Δs + c. (2.4)

By (2.2), it follows that

c =
1

1 −
m−2∑
i=1

ki

∫ T

0
y(s)Δs − 1

1 −
m−2∑
i=1

ki

m−2∑
i=1

ki

∫ ξi

0
y(s)Δs.

So, we get

v(t) = −
∫ t

0
y(s)Δs +

1

1 −
m−2∑
i=1

ki

∫ T

0
y(s)Δs − 1

1 −
m−2∑
i=1

ki

m−2∑
i=1

ki

∫ ξi

0
y(s)Δs.

Lemma 2.2. For y ∈ Cld([0, T ], R) and y(t) ≥ 0, if v(t) is the solution of
(2.1) and (2.2), then we have v(t) ≥ 0, vΔ(t) < 0.

Lemma 2.3. The Green’s function for the following problem:

−vΔ(t) = 0, t ∈ (0, T ), (2.5)

v(T ) =
m−2∑
i=1

kiv(ξi), (2.6)

is given as
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G(t, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j−1∑
i=1

ki

1 −
m−2∑
i=1

ki

, s ≤ t, ξj−1 < s ≤ ξj, j = 1, 2, · · · , m − 1,

1 −
m−2∑
i=j

ki

1 −
m−2∑
i=1

ki

, s > t, ξj−1 < s ≤ ξj, j = 1, 2, · · · , m − 1,

where
l′∑

i=l

ki = 0, for l′ < l.

Proof. For 0 ≤ t ≤ ξ1, the unique solution of (2.1) and (2.2) can be expressed
as

v(t) =
∫ ξ1

t
y(s)Δs +

m−2∑
j=2

∫ ξj

ξj−1

1 −
m−2∑
i=j

ki

1 −
m−2∑
i=1

ki

y(s)Δs +
∫ T

ξm−2

1

1 −
m−2∑
i=1

ki

y(s)Δs.

For ξl−1 ≤ t ≤ ξl, l = 2, 3, · · · , m− 2, the unique solution of (2.1) and (2.2)
can be expressed as

v(t) =
l−2∑
j=2

∫ ξj

ξj−1

j−1∑
i=1

ki

1 −
m−2∑
i=1

ki

y(s)Δs +
∫ t

ξl−1

l−1∑
i=1

ki

1 −
m−2∑
i=1

ki

y(s)Δs +
∫ ξl

t

1 −
m−2∑
i=l

ki

1 −
m−2∑
i=1

ki

y(s)Δs

+
m−2∑

j=l+1

∫ ξj

ξj−1

1 −
m−2∑
i=j

ki

1 −
m−2∑
i=1

ki

y(s)Δs +
∫ T

ξm−2

1

1 −
m−2∑
i=1

ki

y(s)Δs.

For ξm−2 ≤ t ≤ T , the unique solution of (2.1) and (2.2) can be given in
the form

v(t) =
m−2∑
j=2

∫ ξj

ξj−1

j−1∑
i=1

ki

1 −
m−2∑
i=1

ki

y(s)Δs+
∫ t

ξm−2

m−2∑
i=1

ki

1 −
m−2∑
i=1

ki

y(s)Δs+
∫ T

t

1

1 −
m−2∑
i=1

ki

y(s)Δs.
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Therefore, the unique solution of (2.1) and (2.2) can be expressed as

v(t) =
∫ T

0
G(t, s)y(s)Δs.

Let uΔn−1
(t) = v(t), t ∈ [0, T ], by conditions u(0) = uΔ(0) = · · · =

uΔn−2
(0) = 0, we get

uΔn−k−2

(t) =
∫ t

0

(t − s)k

k!
v(s)Δs, k = 0, 1, 2, · · · , n − 2.

Define an operator Ak : Cld([0, T ], R) → Cld([0, T ], R) by

Akv(t) =
∫ t

0

(t − s)k

k!
v(s)Δs, k = 0, 1, 2, · · · , n − 2.

Lemma 2.4 The boundary value problem (1.1) has a nontrivial solution if and
only if the following boundary value problem

⎧⎪⎪⎨
⎪⎪⎩

vΔ(t) + f(t, An−2v(t), An−3v(t) · · · , A0v(t), v(t)) = 0, t ∈ (0, T ),

v(T ) =
m−2∑
i=1

kiv(ξi),
(2.7)

has a nontrivial solution
Proof. In fact, by definition of the operator Ak, if u is a solution of (1.1),
then v = uΔn−1

is a solutio of (2.7). Conversely, if v is a solution of (2.7), then
u = An−2v is a solution of (1.1).
Lemma 2.5.(see [8]) Let X be a real Banach space and Ω be a bounded open
subset of X,0 ∈ Ω, F : Ω −→ X be a completely continuous operator. Then
either there exist x ∈ ∂Ω, λ > 1 such that F (x) = λx, or there exists a fixed
point x∗ ∈ Ω.

3 Main Results

Our main results are the following theorems.
Theorem 3.1. Suppose f(t, 0, · · ·0) �≡ 0, t ∈ [0, T ], and there exist nonnegative
functions p1, · · · , pn q ∈ L1[0, T ] such that

|f(t, u1, · · · , un)| ≤
n∑

i=1

pi(t)|ui|+q(t), a.e. (t, u1, · · · , un) ∈ [0, T ]×Rn, (3.1)

and

K max
0≤t≤T

∫ T

0
G(t, s)

n∑
i=1

pi(s)Δs < 1. (3.2)
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where K =
T n−1

(n − 2)!
+

T n−2

(n − 3)!
+ · · · + T

0!
+ 1.

Then, the boundary value problem (1.1)has at least one nontrivial solution
u∗ ∈ Cld([0, T ], R).
Proof. Let

A = max
0≤t≤T

∫ T

0
G(t, s)q(s)Δs,

B = K max
0≤t≤T

∫ T

0
G(t, s)

n∑
i=1

pi(s)Δs.

By hypothesis B < 1. Since f(t, 0, · · · , 0) �≡ 0, there exists [m,n] ⊂ [0, T ],
then min

m≤t≤n
|f(t, 0, · · · , 0)| > 0. On the other hand, from the condition q(t) ≥

|f(t, 0, · · · , 0)|, a.e. t ∈ [0, T ], we know that A > 0.
Let d = A(1−B)−1, Ωd = {u ∈ Cld([0, T ], R) : ‖u‖ < d}. For 0 ≤ t ≤ T , by

Lemma 2.1 and Lemma 2.3, we define an operator F : Cld([0, T ]) → Cld([0, T ])
by

Fv(t) =
∫ T

0
G(t, s)f(s, An−2v(s), An−3v(s) · · · , A0v(s), v(s))Δs.

Obviously, the boundary value problem (1.1) has a nontrivial solution if and
only if the operator F has a fixed point. Using the Arzela-Ascoli theorem, we
can conclude that F : Cld([0, T ], R) −→ Cld([0, T ], R) is a completely continu-
ous operator.

Noticing that |Akv(t)| =

∣∣∣∣∣
∫ t

0

(t − s)k

k!
v(s)Δs

∣∣∣∣∣ ≤
T k+1

k!
||v||. By hypothesis

(3.1), we have

∣∣∣∣f(s, An−2v(s), An−3v(s) · · · , A0v(s), v(s))

∣∣∣∣
≤ p1(s)|An−2v(s)| + · · · + pn−1(s)|A0v(s)| + pn(s)|v(s)| + q(s)

= K[p1(s) + · · ·+ pn(s)]||v|| + q(s),

where K =
T n−1

(n − 2)!
+

T n−2

(n − 3)!
+ · · ·+ T

0!
+ 1.

Suppose u ∈ ∂Ωd, λ > 1 such that Fu = λu then

λd = λ‖u‖ = ‖Fu‖ = max
0≤t≤T

|(Fu)(t)|

= max
0≤t≤T

∣∣∣∣
∫ T

0
G(t, s)f(s, An−2v(s), An−3v(s) · · · , A0v(s), v(s))Δs

∣∣∣∣

≤ ||v||K max
0≤t≤T

∫ T

0
G(t, s)

n∑
i=1

pi(s)Δs + max
0≤t≤T

∫ T

0
G(t, s)q(s)Δs

= dB + A.
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Therefore
(λ − 1)d ≤ A − (1 − B)d = A − A = 0,

which contradicts λ > 1. By Lemma 2.5, F has a fixed point u∗ ∈ Ωd. Noting
f(t, 0, · · · , 0) �≡ 0, the boundary value problem (1.1) has at least one nontrivial
solution u∗ ∈ Cld([0, T ], R). This completes the proof.
Theorem 3.2. Suppose f(t, 0, · · · , 0) �≡ 0, t ∈ [0, T ], and there exist nonnega-
tive functions pi(s) ∈ L1[0, 1] such that

|f(t, u1, · · · , un) − f(t, v1, · · · , vn)|

≤
n∑

i=1

pi(t)|ui − vi|, a.e. (t, u1, · · · , un), (t, v1, · · · , vn) ∈ [0, T ] × Rn, (3.5)

and (3.2) holds. Then the boundary value problem (1.1) has at least one non-
trivial solution u∗ ∈ Cld([0, T ], R).
Proof. In fact, if v1 = v2 = · · · = vn ≡ 0, then we have

|f(t, u1, · · · , un)| ≤
n∑

i=1

pi(t)|ui| + |f(t, 0, · · · , 0)|.

From the proof of Theorem 3.1, we can know the boundary value problem (1.1)
has at least one nontrivial solution u∗ ∈ Cld([0, T ], R).

But in this case, we prefer to concentrate unique of nontrivial solution for
the boundary value problem (1.1). We shall show that the operator F is a
contraction. In fact, by (3.5), a similar method to Theorem 3.1, we have

∣∣∣∣f(s, An−2u(s), An−3u(s) · · · , A0u(s), u(s)) − f(s, An−2v(s), An−3v(s) · · · , A0v(s), v(s))
∣∣∣∣

≤ p1(s)|An−2u(s) − An−2v(s)| + · · ·+ pn−1(s)|A0u(s) − A0v(s)| + pn(s)|u(s) − v(s)|
≤ K[p1(s) + · · ·+ pn(s)]||u − v||.

Then,

||Fu − Fv|| ≤ max
0≤t≤T

∫ T

0
G(t, s)

∣∣∣∣f(s, An−2u(s), An−3u(s) · · · , A0u(s), u(s))

−f(s, An−2v(s), An−3v(s) · · · , A0v(s), v(s))
∣∣∣∣Δs

≤ K max
0≤t≤T

∫ T

0
G(t, s)[p1(s) + · · ·+ pn(s)]Δs||u − v||.

So (3.2) implies that F is indeed a contraction. Finally we use the Banach
fixed point theorem to deduce the existence of a unique nontrivial solution to
the boundary value problem (1.1).

4. Some examples
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In the section, in order to illustrate our results, we consider some examples.
We only study the case T = R and (0, T ) = (0, 1).
Example 4.1. Consider the following the third-order three-point boundary
value problem

u′′′ + (t − t3) sinu + t3u′ + (t4 − t)u′′ + t3 − 2 sin t = 0, t ∈ (0, 1), (4.1)

u(0) = u′(0) = 0, u′′(1) =
1

2
u′′(

1

2
), (4.2)

Set k1 =
1

2
, ξ1 =

1

2
, n = 3, f(t, u1, u2, u3) = (t− t3) sinu1 + t3u2 + (t4 − t)u3 +

t3 + sin t, p1(t) = t − t3, p2(t) = t3, p3(t) = t4 − t, q(t) = t3 + 2 sin t. By
computing, we have K = 3 > 0 , G(t, s) ≡ 1. Then it is easy to prove that

|f(t, u1, u2, u3)| ≤ p1(t)|u1|+p2(t)|u2|+p3(t)|u3|+q(t), a.e. (t, u1, u2, u3) ∈ [0, 1]×R3,

and

B = K max
0≤t≤T

∫ 1

0
G(t, s)

n∑
i=1

pi(s)Δs = 3
∫ 1

0
s4ds =

3

5
< 1.

By Theorem 3.1, the boundary value problem(4.1)-(4.2) has at least one non-
trivial solution u∗ ∈ Cld([0, 1], R).
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