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Abstract

data envelopment analysis is a linear programming methodologie
that has been widely used to evaluate the performance of a set of
decision-making units. It requires crisp input and output data. How-
ever, in reality input and output cannot be measured in a precise man-
ner. We develop DEA models using imprecise data represented by LR
fuzzy numbers with different shapes. The resulting FDEA models take
the form of fuzzy linear programming and can be solved by the use of
some approaches to rank fuzzy numbers. As an alternative, we introduce
an approach based on the ordering relations between LR-fuzzy numbers.
The approach transforms FDEA models into crisp linear programming
problems. We used a numerical example to illustrate the approach and
compare the results with other approaches.

Keywords: Data envelopment analysis, fuzzy mathematical program-
ming, LR fuzzy numbers, efficiency analysis, ordering relations

Introduction

Data Envelopment Analysis (DEA), developed by Charnes et al. [1] has
emerged as an important tool to evaluate the efficiency of a set of “Decision
Making Units” (DMUs) using multiple inputs to product multiple outputs. It
has been extensively applied in performance evaluation and benchmarking in
a wide variety of contexts including educational departments in public schools
and universities, health care units, prisons, agricultural production, and banks.
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DEA determines a set of weights such that the efficiency of DMU0 (target
DMU) relative to the other DMUS is maximised. For an inefficient DMU, it
identifies the source and the amount of inefficiency in each input relative to
each output. While traditional DEA requires precise data for its analysis, the
evaluation environment often involves vagueness and uncertainty. As system
complexity increases, obtaining precise data becomes a difficult task. Fur-
thermore, decision-makers often think and operate based on vague linguistic
data (e.g., quality is ”good”, on time performance is ”poor”). In these cases,
fuzzy set theory can be a powerful tool to quantify imprecise and vague data
in DEA models. FDEA models (DEA models with fuzzy inputs and fuzzy
outputs) take the form of fuzzy linear programming models. The resolution of
fuzzy linear programming requires a technique to rank fuzzy sets. Many re-
searchers dealing with the problem of fuzzy sets can be founded in [11, 12, and
13]. In
this paper, we propose an approach based on the ordering relations between
LR-fuzzy numbers to solve the primal and the dual of FCCR. The inputs and
outputs are represented by power fuzzy numbers with different shapes. In this
approach we suggest a procedure based on the resolution of a goal program-
ming problem to transform the fuzzy normalisation equality in the primal of
FCCR. In this way, our approach could be a really useful methodology that
provides practitioners with models which represent some real live processes
more appropriately. The remaining part of this paper is organized as follows.
In section 2, DEA and FDEA models are represented. Section 3 is devoted
to data modelling with LR-fuzzy numbers. In section 4, we use the proposed
approach to solve FDEA models. Two numerical examples are presented. Fi-
nally, section 5 concludes the paper.

1 DEA and FDEA models

1.1 DEA model

The model of Charnes et al. [1] called CCR model, and the BCC model
named after Banker, Charnes and cooper [4] are the frequently used models.
The primary difference between the two models is the treatment of returns to
scale. The CCR model assumes constant return to scale. The BCC model is
more flexible and allows variable returns to scale. Other DEA models exist
and all are extensions of the CCR model (see e.g., [13, 14]). In our paper, the
focus will be in the CCR model and the technique developed can be adapted
for all DEA models. Consider n DMUs, each consumes varying amounts of m
different inputs to produce s different outputs. In the models formulation, we
denote by

DMU0 : the target DMU,
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xij : the amount of input i consumed by DMUj ,
yri : the amount of output r consumed by DMUj ,
ui : the weight associate to the ith input,
vr : the weight associate to the rth output.
The programming statements for the (input oriented) CCR model and its

dual are respectively :

Max
s∑

r=1

vryr0

S/T
m∑

i=1

uixi0 = 1, i = 1, ....m, (1)

m∑
i=1

uixij ≥
∑s

r=1 vryrj, j = 1, .....n,

ui, vr ≥ 0.

Min θ0

S/T
n∑

j=1

λjxij ≤ θ0xi0, i = 1, ....m,

n∑
j=1

λjyrj ≥ yr0, r = 1, ....s, (2)

λj ≥ 0, j = 1, ......n
T

target DMU (DMU0) is technically efficient if and only if θ∗ = 1. θ∗ is the op-
timal objective value of model (2), it can be obtained by model (1). From the
the definition of Pareto-Koopmans Efficiency [5, 7], at the optimal solution,
the target DMU (DMU0) is fully efficient if and only if θ∗ = 1 and it’s not pos-
sible to make improvement (lower input or higher output) without worsening
any other input or output.

1.2 FDEA model

In the case of fuzzy data (inputs and outputs), fuzzy set theory can be a
powerful alternative to treat the imprecision and the vagueness in DEA models.
The result FDEA models take the form of fuzzy linear programming problems.
The FCCR and its dual are represented as follow (see [19, 22]):

Max
s∑

r=1

vrỹr0

S/T
m∑

i=1

uix̃i0 = 1, i = 1, ....m, (3)

m∑
i=1

uix̃ij ≥
s∑

r=1

vrỹrj, j = 1, .....n,

ui, vr ≥ 0.
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Min θ0

S/T
n∑

j=1

λj x̃ij ≤ θ0x̃i0, i = 1, ....m,

n∑
j=1

λj ỹrj ≥ ỹr0, r = 1, ....s, (4)

λj ≥ 0, j = 1, ......n

W
x̃ij is the ith fuzzy input utilised by DMUj , ỹrj is the rth fuzzy input produced

by DMUj . Similar to the crisp CCR model, the constraints
m∑

i=1

uix̃i0 = 1

and
m∑

i=1

uix̃ij ≥
s∑

r=1

vrỹij in model (3) are used for normalisation of the value

s∑
r=1

vrỹr0. However, the objective value
s∑

r=1

vrỹr0 can exceed one since the second

and third constraints of (3) are satisfied “possibilistically”. That is, since their

parameters are fuzzy sets,
s∑

r=1

vrỹr0 is “approximately equal to one”, which

implies that
m∑

i=1

uix̃ij/
s∑

r=1

vrỹij is “approximately less than or equal to one”.

The interpretation of constraints of FCCR model is similar to the crisp CCR
model. The difference between the two models resides on the manner of reso-
lution. The crisp CCR model can be simply solved by a standard LP solver.
For the FCCR model, the resolution is more difficult and requires some rank-
ing methods for ranking fuzzy sets. In what follow, we give the literature
review on the approaches proposed to solve FDEA models.The tolerance ap-
proach can be found in Sengupta [5], Kahramman and Tolga [6]. The main
idea is that uncertainty is incorporated into the DEA models by specifying
tolerance levels on constraint violations. The defuzzification approach devel-
oped in Lertworasirikul [7] consists, in a first stage, to defuzzify the fuzzy
inputs and the fuzzy outputs into crisp values. In a second stage, the crisp
values are used in the conventional DEA model. The α based approach can
be found in Maeda et al. [14], Kao and Liu [15]. It consists to solve the
FDEA model by the use of the parametric programming and the technical of
α cut. At a given α level, an interval efficiency is calculated for the target
DMU. A number of such intervals can be used to construct the corresponding
fuzzy efficiency. Guo and Tanaka [9] developed the fuzzy ranking approach.
In the FCCR model, both fuzzy inequality and fuzzy equality are defined by
ranking methods so that the resulting model is a bi-level linear programming
model. For a given α level, they define a nondominated set to evaluate the effi-
ciency of DMUs. Lertworasirikul et al. in [19] proposed a possibility approach
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in which constraints are treated as fuzzy events. The approach transforms
FDEA models into possibility DEA models by using possibility measures of
fuzzy constraints. In the case of trapezoidal fuzzy data (inputs and outputs),
possibility DEA models take the form of linear programming problems. Kao
and Liu in [21] developed a method to rank the fuzzy efficiency scores without
knowing the exact form of the membership functions. The main idea is to
apply the maximizing set–minimizing set technique, which is normally applied
when membership functions are known. Via a skilful modelling technique,
the requirement of the membership functions is avoided. The efficiency rank-
ings are consequently determined by solving a pair of non linear programs
for each DMU. All presented approaches are powerful, but some shortcom-
ings can appear in the way of treatment of fuzzy data in DEA models. For
example, with the defuzzification approach the fuzziness in inputs and out-
puts is effectively ignored. The tolerance approach treats fuzzy inequality and
equality instead of fuzzy inputs and fuzzy outputs. The ranking approach of
Guo and Tanaka uses only one number at a given level to compare fuzzy ef-
ficiencies. With the possibility approach, the numerical computation is more
complicated in the case of fuzzy data with non linear membership functions.
The next section is devoted to data modelling with LR-fuzzy numbers.

2 Data modelling with LR-fuzzy numbers

Several definitions of LR-fuzzy numbers have been published. All of them
are variations on the original definition by Dubois and Parade [18 ]. In this
section, we will use the definitions and notation in [16]. An LR-fuzzy number is

represented as Ãi = (ali, aui, ci, di)LR, where the subset [ali, aui] consists on the
real numbers with the highest chance of realisation, ci is the left spread, di is
the right spread and L & R are functions defining the left and the right shapes
of the fuzzy number respectively. Its membership function can be represented
as:

μ
�A(r) =

⎧⎨
⎩

L(ali−r
ci

), r ≤ ali

1, ali ≤ r ≤ aui

R( r−aui

di
), r ≥ aui

A function, L or R , is said to be a reference function of a fuzzy number
Ã = (x, μ

�A(x)) , if and only if the following conditions are satisfied:

L,R : [0, +∞[ → [0, 1],
L(x) = L(−x), R(x) = R(−x),

L(0) = 1, R(0) = 1, and
L(x) and R(x) are strictly decreasing and upper semi-continuous on supp

(Ã) .

Some particular cases are triangular and trapezoidal fuzzy numbers, for
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which, are linear function. In [18], non linear reference function could be
classified as follow:

Power : Sp (x) = max {0, 1 − xp} , p > 0,
Exponential :Sp (x) = max {0, ap (1 − exp [−p (1 − x)])} ,
ap = [1 − exp (−p)]−1

Rational :Sp (x) = 1/ (1 + xp) , p ≥ 1.
More details on reference function can be found in [16]. In what follow, we

give some results for LR-fuzzy numbers that belong to the same family and
have different shapes.

Definition 1 (Dubois and Parade [18]). Let M̃ and Ñ be two fuzzy

numbers. Then, M̃ � Ñ ⇐⇒ M̃∪ Ñ = M̃ , where M̃∪ Ñ represents the
maximum of those fuzzy numbers.

Prposition 1 (Ramik and Rimanek [17]: Let M̃ and Ñ be two fuzzy num-

bers. Then M̃∪ Ñ if and only if inf
{
s : μ

�M (s) ≥ w
} ≥ inf

{
t : μ

�M (t) ≥ w
}

and sup
{
s : μ

�M (s) ≥ w
} ≥ sup

{
t : μ

�M (t) ≥ w
}

hold for all grades of mem-
bership w in [0, 1] .

Definition 2 (Tanaka et al. [9]). Let M̃ and Ñ be two fuzzy

numbers and h a real number, h ∈ [0, 1], then M̃ �h Ñ if and only if
inf

{
s : μ

�M (s) ≥ w
} ≥ inf

{
t : μ

�M (t) ≥ w
}

and sup
{
s : μ

�M (s) ≥ w
} ≥

hold.
Hence, for two LR-fuzzy numbers M̃ = (ml, mu, c1, d1) and Ñ = (nl, nu, c2, d2)

at a given possibility level h: M̃ �h Ñ , then its necessary to check m1 −
c1L

−1 (w) ≥ n1 − c2Ĺ
−1 (w) and mu + d1R

−1 (w) ≥ nu + d2Ŕ
−1 (w) , w ∈ [h, 1]

3 Solving FDEA models

We Consider that the fuzzy inputs and outputs in the FCCR model represented
by (4) in the second section can be expressed as LR-fuzzy numbers, and have
different power reference functions. To be more clearly we give the following
notation:

x̃ij = (xlij , xuij, aij, bij): The input i consumed by DMUj,
ỹrj = (ylrj, yurj, crj, drj): The output r consumed by DMUj,
L−1

ij (h): The inverse of the left reference function of x̃ij .

R−1
ij (h): The inverse of the right reference function of x̃ij .

Ĺ−1
rj (h): The inverse of the left reference function of ỹrj .

Ŕ−1
rj (h): The inverse of the right reference function of ỹrj .

3.1 Solving the dual of FCCR

Since fuzzy inputs and fuzzy outputs are LR fuzzy numbers, the constraints in
(4) can be considered as inequalities between LR fuzzy numbers, and the use
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of the ordering relation in [9] allows us to convert each fuzzy constraint into
two crisp inequalities. Thus, model (4) can be transformed in the following
crisp linear programming problem:

Min θ0
n∑

j=1

(
xlij − aijL

−1
ij (h)

)
λj ≤

(
xli0 − ai0L

−1
i0 (h)

)
θ0, i = 1, .....,m,

n∑
j=1

(
xuij + bijR

−1
ij (h)

)
λj ≤

(
xui0 + bi0R

−1
i0 (h)

)
θ0, i = 1, .....,m, (5)

n∑
j=1

(
ylrj − crjĹ

−1
rj (h)

)
λj ≥

(
ylr0 − crjĹ

−1
r0 (h)

)
, r = 1, ....., s,

n∑
j=1

(
yurj + drjŔ

−1
rj (h)

)
λj ≥

(
yur0 + dr0Ŕ

−1
r0 (h)

)
, r = 1, ....., s,

λj ≥ 0, h ∈ [0, 1] , j = 1, ....., n.

We note that if the fuzzy inputs and fuzzy outputs are triangular or trape-
zoidal, then, L−1

ij (h) = R−1
ij (h) = Ĺ−1

rj (h) = Ŕ−1
rj (h).

optimal value of (5) provides an evaluation of the efficiency of the target DMU
(DMU0) in witch all the possible values of different variables are considered
and the decision maker can obtain efficiency scores with respect to a given
possibility level. The value efficiency at a given possibility level h is crisp.

Prposition 2 The efficiency score is a nonincreasing function of possi-
bility level h .

Proof let S = (λ∗
1, ...., λ

∗
n, θ∗) is the optimal solution of (4)

at the possibility level h, then, we have
n∑

j=1

λjx̃ij ≤ θ0x̃i0, i = 1, ....m, and

n∑
j=1

λj ỹrj ≥ ỹr0, r = 1, ....s, for all possibility level h́ ∈ [h, 1] . Therefore, S is

a feasible solution of (3) for all h́ such that h ≤ h́ ≤ 1 . Consequently, the
optimal value of model (4), which is a minimisation problem, at possibility
level h́ will be greater than or equal to θ∗0

prposition 3 DMU0 is called fuzzy efficient if and only if it is efficient
at least at one possibility level h. Otherwise, it is fuzzy inefficient.

Here, we define two fuzzy sets Ẽ and
−̃
E for the fuzzy efficient and fuzzy

inefficient DMUs respectively.

For a given DMUj, the membership functions are givenby

μ
�E (DMUj) =

⎧⎨
⎩

∗0 if DMUj is inefficient at all possibility levels h.
∗ sup

{
h : θ∗j (h) = 1

}
if DMUj is efficient at some

possibility levels h.

μE� (DMUj) =

⎧⎨
⎩

∗1 − sup
{
h : θ∗j (h) = 1

}
if DMUj is efficient .

at some possibility levels h.
∗ 1 if DMUj is inefficient at all possibility levels h .

Definition 3 DMU0 is called fuzzy nondominated efficient if and only if
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it is efficient at all possibility levels h .

Example 1 Suppose that there are 5 DMUs, two fuzzy inputs and two
fuzzy outputs with different power reference functions. Values of data and
reference functions are shown in table 1 and 2, respectively:

Table 1 value of fuzzy inputs and fuzzy output
DMUj 1 2 3 4 5

Input 1 (1;0.25;025) (2;0.2;0.2) (3;0.5;1) (6;2;1) (1;0.25;0.25)

Input 2 (3;0.5;1) (2;0.2;0.2) (2;0.2;0.2) (4;1.5;1) (3;0.5;1)

Output 1 (2;0.2;0.2) (1;0.25;0.25) (1;0.25;0.25) (2;0.2;0.2) (1;0.25;0.25)

Output 2 (6;2;1) (3.5;0.5;1) (2;0.2;0.2) (6;2;1) (3.5;0.5;1)

Table 2 reference functions of fuzzy input and fuzzy output
Inputs L(K) R(K) outputs L′(K) R′(K)

x̃11 1 − k8 1 − k3 ∼
y11 1 − k3 1 − k3

x̃12 1 − k 1 − k2 ∼
y12 1 − k4 1 − k

x̃21 1 − k3 1 − k3 ∼
y21 1 − k8 1 − k3

x̃22 1 − k3 1 − k3 ∼
y22 1 − k3 1 − k3

x̃31 1 − k 1 − k2 ∼
y31 1 − k8 1 − k3

x̃32 1 − k3 1 − k3 ∼
y32 1 − k5 1 − k3

x̃41 1 − k4 1 − k
∼
y41 1 − k3 1 − k3

∼
x42 1 − k 1 − k2 ∼

y42 1 − k4 1 − k
∼
x51 1 − k8 1 − k3 ∼

y51 1 − k8 1 − k3

∼
x52 1 − k 1 − k2 ∼

y52 1 − k 1 − k2

The application of model (5) provides the efficiency values registered in
table 3. The efficiency value of each DMU is a nonincreasing function of
possibility level h . DMU1 is efficient at all possibility levels, and then it is
called a fuzzy nondominated DMU. DMU2, DMU3 and DMU4 are efficient at
possibility levels (0, 0.25, 0.5, 75), (0, 0.25) and (0) respectively, then, they
are fuzzy efficient. DMU5 is inefficient at all possibility levels, then, it is called
fuzzy inefficient.
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Table 3 efficiency values for example 1
α DMU1 DMU2 DMU3 DMU4 DMU5

0.0 1.000 1.000 1.000 1.000 0.785
0.25 1.000 1.000 1.000 0.913 0.772
0.50 1.000 1.000 0.975 0.846 0.768
0.75 1.000 1.000 0.930 0.806 0.761
1.00 1.000 0.875 0.750 0.750 0.583

3.2 Solving the primal of FCCR

The primal of FCCR in (3) takes the form of a linear programming prob-
lem with fuzzy coefficients in the objective function and in the constraints.
We use the ordering relation between fuzzy numbers to solve this problem.

First, let us consider the objective function max
s∑

r=1

vrỹr0. Because of the effi-

ciency value is positive; the objective function can be regarded as a constraint

(max
s∑

r=1

vrỹr0 ≥ 0 ). Using the ordering relation in definition 2, this constraint

is decomposed into two crisp relations as follow; max
s∑

r=1

vr

(
ylr0 − cr0Ĺ

−1
r0 (h)

)

and max
s∑

r=1

vr

(
yur0 + dr0Ŕ

−1
r0 (h)

)
, h ∈ [0, 1] . Then, max

s∑
r=1

vrỹr0 is equiva-

lent to maximise
s∑

r=1

vr

(
ylr0 − cr0Ĺ

−1
r0 (h)

)
and

s∑
r=1

vr

(
ylr0 − cr0Ĺ

−1
r0 (h)

)
simul-

taneously. A weighted function

λ1

s∑
r=1

vr

(
ylr0 − cr0Ĺ

−1
r0 (h)

)
+ λ2

s∑
r=1

vr

(
yur0 + dr0Ŕ

−1
r0 (h)

)
with λ1 ≥ 0,

λ2 ≥ 0 and λ1 + λ2 = 1 is used to obtain some compromise solution. Here,
the values of λ1 and λ2 reflect the opinion of the decision maker, we consider
three cases; optimistic if λ2 = 1, pessimistic if λ1 = 1 and indifferent if λ1 = λ2 .
Then the following objective function is obtained:

maxλ1

s∑
r=1

vr

(
ylr0 − cr0Ĺ

−1
r0 (h)

)
+ λ2

s∑
r=1

vr

(
yur0 + dr0Ŕ

−1
r0 (h)

)
(6)

Next, let us consider the normalisation equality
m∑

i=1

uix̃i0 = 1 . We transform

this relation into two crisp equalities as follow:
m∑

i=1

ui

(
xli0 − ai0L

−1
i0 (h)

)
= 1, (7)

m∑
i=1

ui

(
xui0 + bioR

−1
i0 (h)

)
= 1 H

weights ui cannot be found out to satisfy equalities (7) simultaneously. To
avoid this difficulty, we consider each equality as a goal to achieve. Thus, a
goal programming problem must be constructed:

Min d+
1 + d−

1 + d+
2 + d−

2
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m∑
i=1

ui

(
xli0 − ai0L

−1
i0 (h)

) − d+
1 + d−

1 = 1, i = 1, ........,m,

m∑
i=1

ui

(
xui0 + bi0R

−1
i0 (h)

)−d+
2 +d−

2 = 1, i = 1, ........,m, (8)

d+
1 ≥ 0, d+

2 ≥ 0, d−
1 ≥ 0, d−

2 ≥ 0

ui ≥ 0, h ∈ [0, 1] ,
d+

i et d−
i are respectively the negative and positive deviation corresponding to

goal gj , j = 1, 2 . Solving problem (8) provides the values of ρi

(
ρi = d+

i − d−
i

)
.

These values are added to the left sides of equalities (7) and finally the equality
m∑

i=1

uix̃i0 = 1 is converted as follow:

m∑
i=1

ui

(
xli0 − ai0L

−1
i0 (h)

)−ρ1 = 1, (9)

m∑
i=1

ui

(
xui0 + bi0R

−1
i0 (h)

) − ρ2 = 1,

The use of ordering relation in definition 2, at a given possibility level

h , allows us to transform the constraint
m∑

i=1

uix̃ij ≥
s∑

r=1

vr ỹij into two the

following crisp relations;
m∑

i=1

ui

(
xlij − aijL

−1
ij (h)

) ≥
s∑

r=1

vr

(
ylrj − crjĹ

−1
rj (h)

)

and
m∑

i=1

ui

(
xuij + bijR

−1
ij (h)

) ≥
s∑

r=1

vr

(
yurj + drjŔ

−1
rj (h)

)
.Finally, the primal

of fuzzy CCR can be transformed into the following crisp linear problem:

maxλ1

s∑
r=1

vr

(
ylr0 − cr0Ĺ

−1
r0 (h)

)
+ λ2

s∑
r=1

vr

(
yur0 + dr0Ŕ

−1
r0 (h)

)
m∑

i=1

ui

(
xli0 − ai0L

−1
i0 (h)

) − ρ1 = 1

m∑
i=1

ui

(
xui0 + bi0R

−1
i0 (h)

) − ρ2 = 1

m∑
i=1

ui

(
xlij − aijL

−1
ij (h)

) ≥
s∑

r=1

vr

(
ylrj − crjĹ

−1
rj (h)

)
(10)

m∑
i=1

ui

(
xuij + bijR

−1
ij (h)

) ≥
s∑

r=1

vr

(
yurj + drjŔ

−1
rj (h)

)
ui ≥ 0, vr ≥ 0, h ∈ [0, 1]

The optimal value of (10) provides a crisp value of the efficiency of the
target DMU (DMU0) in witch all the possible values of different variables are
considered. The decision maker can obtain efficiency scores with respect to a
given possibility level. We note here that our methodology to solve the primal
of FCCR differ from the method of Guo and Tanaka in [9] in the three following
points. Firstly, Guo and Tanaka used a triangular and symmetric fuzzy data.
In our model, we can use different forms of fuzzy data. Secondly, they handled
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the constraint
m∑

i=1

uix̃i0 = 1 by the resolution of a linear programming problem.

In our approach, we converted this equality into two crisp constraints by the
use of a goal programming problem. Thirdly, they obtained fuzzy efficiency
scores. Our model gives crisp values. In what follow, we will use the example
of Guo and Tanaka to illustrate our approach.

Example 2 The data of this example are listed in table 4. There are
two fuzzy inputs and two fuzzy outputs. These fuzzy inputs and outputs have
symmetrical triangular membership functions. They are denoted by (a, c, d)
where a is the centre, c is the left spread and d is the right spread.

Table 4 value of fuzzy inputs and fuzzy output
DMUj 1 2 3 4 5
Input 1 (4.0;0.5) (2.9;0.0) (4.9;0.5) (4.1;0.7) (6.5;0.6)
Input 2 (2.1;0.2) (1.5;0.1) (2.6;0.4) (2.3;0.1) (4.1;0.5)
Output 1 (2.6;0.2) (2.2;0.0) (3.2;0.5) (2.9;0.4) (5.1;0.7)
Output 2 (4.1;0.3) (3.5;0.2) (5.1;0.8) (5.7;0.2) (7.4;0.9)

Table 5 shows that, the efficiency score of a DMU is an increasing function
of possibility levels h except DMU5 witch is efficient at all possibility levels.
DMU3 and DMU1 have efficiency scores less than one at all possibility lev-
els, then they are called fuzzy inefficient. DMU2 and DMU4 are efficient at
possibility level one. This means that they are fuzzy efficient.

It was shown in [9] that when using Guo and Tanaka’s fuzzy ranking ap-
proach, DMU2 and DMU4 fell in all α-possibilistic nondominated sets. In
addition, using the possibility approach [19], DMU2, DMU4 and DMU5 are
efficient for five different possibility levels

Table 5 efficiency values for example 2
α DMU1 DMU2 DMU3 DMU4 DMU5

0.0 0.747 0.950 0.742 0.962 1.070
0.25 0.769 0.960 0.768 0.968 1.053
0.50 0.790 0.971 0.796 0.987 1.033
0.75 0.814 0.983 0.860 0.989 1.015
1.00 0.855 1.000 0.860 1.000 1.000
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Conclusion

In this paper, an approach based on the ordering relations between fuzzy num-
bers for solving fuzzy DEA models has been developed to provide an alterna-
tive treatment of fuzzy DEA models. In this approach, fuzzy inputs and fuzzy
outputs are represented by LR-fuzzy numbers with different power reference
functions. For the dual of FCCR, the two fuzzy constraints were transformed
in four crisp constraints. Then the resulting model takes the form of crisp
linear programming problem. A numerical example in witch fuzzy inputs and
fuzzy outputs has different power reference functions are used to demonstrate
the implementation of the proposed approach.

To solve the primal of FCCR, the objective function were considered as
fuzzy constraint. This constraint was discovered into crisp function with the
use of a weighting function. The fuzzy normalization equality was transformed
into two crisp equalities by the use of a goal programming problem. Then
the resulting model takes the form of crisp linear programming problem. A
numerical example with symmetric triangular reference function was used.

Another interesting topic for future is the resolution of FDEA models in
witch fuzzy inputs and fuzzy outputs have exponential or rational reference
functions.
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