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Abstract. This paper is devoted to derive the necessary and sufficient condition for a
set of matrices to commute. It is proved that the commutator [A,B]=0 for two

matrices A and B if and only if a vector v (B) defined uniquely from the matrix B is in
the null space of a well- structured matrix defined as the Kronecker sum A @ (—A*),

which is always rank defective. This result is extendable directly to any countable set
of commuting matrices.
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I. INTRODUCTION

The investigation of the problem of commuting matrices is very relevant in certain
problems of Engineering and Physics. In particular, such a problem is of crucial
interest related to discrete Fourier transforms, normal modes in dynamic systems or
commuting matrices dependent on a parameter (see, for instance, [1-3]). It is well-
known that commuting matrices have at least a common eigenvector and also, a
common generalized eigenspace, [4-5]. A less restrictive problem of interest in the
above context is that of almost commuting matrices, roughly speaking, the norm of the
commutator is sufficiently small, [5-6]. A very relevant related result is that the sum of
matrices which commute is an infinitesimal generator of a C,- semigroup. This leads

to a well-known result in Systems Theory establishing that that the matrix function
efititAzta _gAtlig Aotz g 3 fundamental (or state transition) matrix for the cascade of

the time invariant differential systems x,(t)=A,x,(t), operating on a time t,,
andx,(t)=A, x,(t), operating on a time t,, provided that A ,and A, commute (see,
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[7-11] ).The problem of commuting matrices is also of relevant interest in dynamic
switched systems, namely, those which possess several parameterizations one of each
is activated at each current time interval. If the matrices of dynamics of all the
parameterizations commute then there exists a common Lyapunov function for all
those parameterizations and any arbitrary switching rule operating at any time instant
maintains the global stability of the switched rule provided that all the
parameterizations are stable, [7]. However, in the case that there is no common
Lyapunov function for all the parameterizations , a minimum residence time at each
active parameterization is needed to maintain the global stability of the switched
system so that the switching rule among distinct parameterizations is not arbitrary,
[12-13]. This fact implies that . Parallel results apply for switched time-delay systems
subject to point delays under zero or sufficiently small delays when the matrices
defining the delay-free dynamics of the various parameterizations commute, [10-11].
This paper formulates the necessary and sufficient condition for any countable set of
(real or complex) matrices to commute.

1.1. Notation
[A,B] is the commutator of the square matrices A and B.

A®B:=(a;;B) is the Kronecker (or direct) product of A:=(a;;) and B.
A®B:=A®I ,+1,®B is the Kronecker sum of the square matrices A:=(a;;) and both
of order n, where 1, is the n-th identity matrix.

A Tis the transpose of the matrix A and A "is the conjugate transpose of the complex
matrix A. For any matrix A, ImA and Ker A are its associate range (or image)

subspace and null space, respectively. Also, rank (A) is the rank of A which is the
dimension of Im (A) and det (A) is the determinant of the square matrix A.

v(A):(aI,a{,....,aI)Tec“2 if a ?::(ail,aiz,....,ain) is the i-th row of the square matrix
A.

s(A) is the spectrum of A ; n:={1,2,..,n}. If L;ec(A) then there exist positive
integers p; and v;<u; which are, respectively, its algebraic and geometric

multiplicity; i.e. the times it is repeated in the characteristic polynomial of A and the
number of its associate Jordan blocks, respectively. The integer p<nis the number of

distinct eigenvalues and the integer m;, subject to 1<m<u;, is the index of
rieo(A); Vien, that is, its multiplicity in the minimal polynomial of A.

A ~ B denotes a similarity transformation from A to B=T *AT for given
A,BeR ™" for some non-singular TeR ™", A = B = E A F means that there is an
equivalence transformation for given A,BeR ™" for some non-singular E,FeR ™".
A linear transformation from R"to R", represented by the matrix TeR ™", is
denoted identically to such a matrix in order to simplify the notation. If
VzDomT=R" is a subspace of R" then ImT(V):={Tz:zeVv} and
KerT(V)::{ZEV ; Tz=oeR”} . If v=R" | the notation is simplified to
ImT::{Tz: zeR" }and KerT::{zeR” :Tz=0eR" }

The symbols “ A and v ” stand for logic conjunction and disjunction, respectively.
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The abbreviation “iff ” stands for “ if and only if”.
The notation card U stands for the cardinal of the set U.

I1. COMMUTING AND NON - COMMUTING MATRICES WITH A GIVEN ONE

Consider the sets C ,:=|XeR™":[A,X]=0 | =@, of matrices which commute with A,
and T ,:={XeR™™:[AX]#0], of matrices which do not commute with A;
vAcR™" | Note that 0eR™" ~ C,; i.e. the zero n- matrix commutes with any n-
matrix so that, equivalently, 0¢R™" ~ C, and then C,n C,=@; YAeR™". The

following two basic results follow concerning commutation and non- commutation of
two matrices:

Propositions 2.1. (i)
C A::{ XeR™MM:v(X)e Ker(A@ (— AT))} , and equivalently,
[A,X]=0& v(X)eKer(A@ (—AT)).

(i) T o:= RnX”\CA:{Xe RMM:v(X)e Ker(A@(—AT))}

~AT))}, and, equivalently,
~AT))

E{XeRnxn:V(X)elm(A®
[A, X]20s v(X)e |m(A®

(iii) BeC A::{xeR“X“:v(x)eKer(A@(—AT))}
& AeCgi={XeR™M:y(X)eKerBO —BT))} O
Proposition 2.2.
rank(Aea (— AT))<n 2o Ker(A@ (— AT));tO eCp
e0co(A® (- AT)) = 3X(20); vAR™" O

The subsequent result is stronger than Proposition 2.2.

Theorem 2.3. The following properties hold:
(i) The spectrum of A@ (-AT)is o(A® (- AT))={T,,=2, -2 ,:%,,2,cc(A); Vi jen ]

and possesses v Jordan blocks in its Jordan canonical form of, subject to the

. 2 . .
constraints nzzvzdimsz{g viJ >v(0), and Oeo (A@(—AT)) with an algebraic
i-1

multiplicity 1(0)and with a geometric multiplicity v(0) subject to the constraints:
n2—[§ ui]2>u(0)>§ u2>50)= % v2=n (2.1)
i=1 i i

where:
a) S:=span{zj ®x j,Vi,jel |, pi=pn(r;) and vi=v(r;)are, respectively, the

algebraic and the geometric multiplicities of A jec (A), Vien; pu<n is the number of
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distinct 1 ;ec(A) (iep), ui=g(iij) and v,;=v (Xij), are, respectively, the algebraic

j)EG(A@(—AT)), Vi, jen; u<n , and

and the geometric multiplicity of & ;; = (xi -
b) x;and z; are, respectively, the right eigenvectors of A and AT with
respective associated  eigenvalues 1 j and % ;Vi,jen .
(ii) dim Im(A@ (— AT))zrank(A® (— AT))z n?-v(0)
< dim Ker(A(—B (— AT))= v(0); vAeR™N (2.2)
Expressions which calculate the sets of matrices which commute and which do ngt
commute with a given one are obtained in the subsequent result:

Theorem 2.4. The following properties hold:

(i) XeC,  iff (A (-AT))v(X)=0 o = xec,  iff
v(X):—F(vT(Y ) A 1_2 A IlT, VT<72)) T
for any v(X,)eKer(A,, -A A AL,), where E,FeR" """ are permutation matrices
and X<R™" and v(X)eR"" are defined such that:

(@ v(X)=Ftv(X) ,

A®(-AT)xA=E(A® (- AT))F; vXeCu (2.3)
where v(X)=(vT(X,),vT(X,)) "eR "* with v(X,)eR"®)and v(X,)eRr ")

(b) The matrix A, eR"(9<¥(%) js non-singular in the block matrix partition
K::Blockmatrix(ﬂij;i,jei) with  A,eR¥O" A cR b*5(0)}v(0)  ang
A, eR (h2-%(0) Jx [n 2-5(0))

(ii) XeC 4, for any given A(=0)eR ™", iff

(A@ (— AT))v(x)=v(|v|) (2.4)
for some M(#0)eR "" such that :
rank(A@ (— AT))zrank(A@D (— AT), v(M)):n 2-v(0) (2.5)
Also,
EA::{xeR . (A@ (— AT) )v(X):v(M) forany M(=0)eR"™" satisfying

rank(A@ (— AT) )=rank(A® (— AT), v(M ))=n 2—V(O)} (2.6)

Also, with the same definitions of E , F and X in (i), X eC 4 iff
v(X)=F(vT (M, )AZT-VI(X,)A T ALT v (X,))T

(2.7)
where v(X ,) is any solution of the compatible algebraic system
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for some M(%20)eR™" such that X, MeR™" and are defined according to

v(X)=Fv(X) and M=EMF~M(=0)eR™" and v(W:Ev(M):E(vlT(M), vg(M))T .0

1. PAIR-WISE COMMUTING MATRICES

Consider the following sets:
(1) A set of nonzero p=2 distinct pair-wise commuting matrices

Aci=|AjeR™M:[A[ A ]=0; vi,jep|

(2) The set of matrices MCAczz{xeR”X”:[x,Ai]zo; VAieAC} which
commute with the set A - of pair-wise commuting matrices.

(3) A set of matrices CA:={Xe RM™M:[X Aj]=0; VA;eA } which commute with
a given set of nonzero p matrices A:={Aie R ™M vi eﬁ} which are not necessarily
pair-wise commuting. o
The complementary sets of MC, . and Cp are MCa  and Cp , respectively, so that
R >BeMCp_ if BgMCA_ and R"™">BeC, if BegCn . Note that
Ca.=MCp for a set of pair-wise commuting matrices A ¢ so that the notation
MCp . is directly referred to a set of matrices which commute with all those in a set of

pair-wise commuting matrices. The following two basic results follow concerning
commutation and non- commutation of two matrices:

Proposition 3.1. The foIIowing(Jroperties hold:

(i) ov(Aj)e ’ n) 7Ker(Aj@ —AjT));Vieﬁ

j(#i)ep
<:>V(Ai)ei n Ker(Aj@(—AjT)) Viep
+1<j<p
(i) Define
Ni(Ac)= [aJe(-Ay) - AT e (-Ay) AL®(-Aus) — ATe(-a,)]T erPNn® - Then

AjeAc;Viep iff v(Aj)e KerNj(Ac);Viep
(iii) MCa ::{XGR“X“:v(x)e_mKer(Aiea(—AiT));AieAc}
iep
:{xeR“X“:v x)eKerN(AC)}DcAC:AC:{O}eR”X”

where

N(Ac)=

[AI@(—Al) Ale(-A,) ---Ag@(pr)]Teanzxnz,AieAc

(iv) MCAC::{XER ”X”:v(x)eU|m(Ai@(—AI));AieAC }
iep

—{XeR™: v(X)eImN(A¢ )]
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(v) CA::{XeRnxn:V(X)e_ﬂ Ker(Ai@(—AiT)); AieA}
iep

={XeRnxn:v(X)eKerN(A)}

where

N(A)= [aTo(-A;) Ala(-A,) —~ATe(-A,)] crPI?0® A cA

(Vi) Cpi={ X eR™": v(x)eU|m(Ai @(—AI));AieA}

—{XxeR™": v(X)eImN(A)}

Proof: (i)The first part of Property (i) follows directly from Proposition 2.1 since all
the matrices of A ¢ pair-wise commute and any arbitrary matrix commutes with itself

(thus j =i may be removed from the intersections of kernels of the first double sense
implication). The last part of Property (i) follows from the anti-symmetric property of

the commutator [Ai,Aj]=[Aj,Ai] =0;VAj,AjeAc what implies

AcAciviep ov(A)e n  kerlajo(-AT)|vajAajeac (i) It follows
i+1<j<p

from its equivalence with Property (i) since KerN;(A¢)= ( N Ker(Aj @(—AJ.T)).
j(zi)ep

(iii) Property (iii) is similar to Property (i) for the whose set M 5 . of matrices which

commute with the set A - so that it contains A ¢ and, furthermore ,

KerN(Ac)= N Ker(Ai @(—AiT ))
icp

(iv) 1t follows from _U7|m(Aj@(—A-jr))=_ﬂiKef(Aj(@(—A}-)) [AjeAc and
Jep Jep

R ”ZaOGKer(Aj@(—AjT)) N Im(Aj@)(—AJT)) but R"*" 5X=0 commutes with any
matrix in R™" sothat R™"50eMCp =R™"50¢MCp . forany given Ac.

(v)-(vi) are similar to (ii)-(iv) except that the members of A do not necessarily
commute. O

Concerning Proposition 3.1 (v)-(vi), note that if XeCa then  X=0 since

R"M50eC 5. The following result is related to the rank defectiveness of the matrix
N(A¢) and any of their sub-matrices since A is a set of pair-wise commuting
matrices:

Proposition 3.2. The following properties hold:
n?>rankN(Ac)=rankN i(Ac)zrank(Aj @(—A JT)) , VAjeA Vi jep

and, equivalently,
det(NT(ACIN(AC))=det(N T (Ac)N (A¢)) =det(a;@(-AT))=0; YAjeAc; Vi jen. O
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Results related to sufficient conditions for a set of matrices to pair-wise commute are
abundant in the literature. For instance, diagonal matrices are pair-wise commuting.
Any sets of matrices taking via multiplication by real scalars with any arbitrary matrix
consist of pair-wise commuting matrices. Any set of matrices obtained by linear
combinations of one of the above sets consist also of pair-wise commuting matrices.
Any matrix commutes with any of its matrix functions etc. In the following, we
discuss a simple, although restrictive, sufficient condition for rank defectiveness of
N(A) of some set A of p square real n- matrices which may be useful as a test to
elucidate the existence of a nonzero n- square matrix which commutes with all
matrices in this set. Another useful test obtained from the following result relies on a
necessary condition to elucidate if the given set consists of pair-wise commuting
matrices.

Theorem 3.3: Consider any arbitrary set of nonzero n-square real matrices
Ai={ A1, A2,..,A, | forany integer p>1 and define matrices:
Ni(A):=
[ATe(-A1) - AT18(-As) ATue(-ALy) — ATe(-A,)]T
N(A)=|ATo(-A1) ATo(-Ay) — ATe(-Ap)[T
Then, the following properties hold:
(i) rank(Ai @(—Ai ))srankNi(A)s rank N (A )<n?; Viep.
(i) n Ker(Ai@(—AiT))i{o} so that:

iep
3X(#0)eCa , XeCa e v(X)e N Ker(Ai®(—AiT)) and

iep
XeCp e v(X)e U |m(Ai@(—AiT))
iep

(iii) If A=A ¢ is aset of pair-wise commuting matrices then
v(Aj)e n Ker(Aj@(—AjT)) Viep ov(Aj)e N Ker(Ai @(—AiT)) Viep
jep\i iep
sv(Aj)e n Ker(Ai @(—AiT)) Viep
iep\{i}
(iv) MAC:={XER”X”:V(X)_0 ker(A, @(-AT)) va, eAC} SAc Uf0}eR™D
iep
with the above set inclusion being proper. O

Note that Theorem 3.3 (ii) extends Proposition 3.1 (v) since it is proved that
C A\ {0}=@because all nonzero R™" 5 A =diag( % % --- A)eCp for any R>A=0and any

set of matrices A . Note that Theorem 3.3 (iii) establishes that
v(Aj)e m{ } Ker(Aj @(—AJT )) ;Viep is a necessary and sufficient condition for the
icp\{i

set to be a set of commuting matrices A being simpler to test (by taking advantage of
the symmetry property of the commutators) than the equivalent condition:
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v(Aj)e n Ker(Aj@(—AjT)) ;viep . Further results about pair-wise commuting
iep

matrices or the existence of nonzero commuting matrices with a given set are obtained
in the subsequent result based on the Kronecker sum of relevant Jordan canonical
forms:

Theorem 3.4. The following properties hold for any given set of n-square real
matrices A={A1,Ay,.., Apf:

(i) The set Cc o of matrices Xe R ™" which commute with all matrices in A is defined
by:

cA:={xe RN v(x)eiriw1 [ Ker[(J A @(—JAiT)) (Pi_l ®P ‘_T)D } (3.1)
—{XERnan v(x)eii[lm((Pi ®Pi_1) (Yi)n NG eKer(JAi @(—JAiT) Vi ep} (3.2)
={xeR“X”:v(x)eﬁ[|m((Pi ®Pi_1) (Y))J, Yeiri(Ker(JAi @(—JAT)))} (3.3)

where P;eR"™" is a non-singular transformation matrix such that
Ai~JA, :Pi‘lAi Pi, J A, being the Jordan canonical form of Aj.

(i) dimspan {v(X): XeC p}< min dim (Ker(JAi @(—JAI))) =min v (0)= min (pz' v IZJ]
iep icp iepli=L

Pi :
< min {z “iszS min (;(0))
iep \i=l iep

where v ;(0) and wv;; are, respectively, the geometric multiplicities of
oec(Ai@(—AiT)) and ijjec(Aj) and wwi(0)and pjj are, respectively, the algebraic
multiplicities of oec(Ai@(—AiT)) and xijec(Ai); Vijep i( the number of distinct
eigenvalues of A),Viep.

(iii) The set A consists of pair-wise commuting matrices, namely C o=MCp, iff

Je A 32T (ptep-T)|) ; Vjep . Equivalent conditions
v(A ) i(irj])zl(Ker[(JAi@( JAi))(PI ®FP )D S q
follow from the second and third equivalent definitions of C 4 in Property (i). O

Theorem 3.3 are concerned with MCp = {0 }eR "*" for an arbitrary set of real square
matrices A and for a pair-wise-commuting set , respectively.

IV. FURTHER RESULTS AND SOME EXTENSIONS

The extensions of the results for commutation of complex matrices is direct in
several ways. It is first possible to decompose the commutator in its real and
imaginary part and then apply the results of Sections 2-3 for real matrices to both parts

as follows. Let A=A, +iAj,and B=B, +iBj, be complex matrices in c"*" with

A, and B being their respective real parts , and A, and Bjy, all in R "*"their
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respective imaginary parts and i=,/—1 is the imaginary complex unity. Direct
computations with the commutator of A and B yield:

[A’B]:([AreaBre] _[Aima Bim]) +i([Aim: BreJ+ [Are1 BimJ) (4.1)

The following three results are direct and allow to reduce the problem of commutation
of a pair of complex matrices to the discussion of four real commutators:

Proposition 4.1. BeC 5
(([ArevBre] :[AimvBim])/\([AimvBre]:[BimrAre ]))

Proposition 4.2.
(B re e(CAre ﬁCAim )A Bim € (CAim ﬁCAre) )
= BeCp .

Proposition 4.3.
(A re e(CBre mCBim )/\Aim e(CBim mCBre) )

:>B€CA. O

Proposition 4.1 yields to the subsequent result:

Theorem 4.4. The following properties hold:
(i) Assume that the matrices A and B |, are given. Then, BeC p iff By satisfies the

linear algebraic equation:
T
Ap® (—A re)
V(Bre)= T
Are® (—A re)
for which a necessary condition is:
i T
A im ® (_A im)
L Ar® (_A;’re)

rmkA“@(A%)[A”@(Aﬁﬂvmmi “3)

Ae® _AIe) AimEB(_A;rm

T
Aim® (_Aim)

]V(Bim) (4.2)

Aime (AT

rank

(if) Assume that the matrices A and By are given. Then, BeC p iff B, satisfies

(4.2) for which a necessary condition is:

_A re ® (_A;’re) }

_A im @ (_A;rm)

_Are@(_A-rre) [Aim('B(A;rm)J ]
V( B im)

_A im ® (_AiTm)

rank

rank
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A more general result than Theorem 4.4 is the following:

Theorem 4.5. The following properties hold:

(i) BeC onc™" iff v(B)isa solution to the linear algebraic system :

Are® (—Ag—e) (—A im )@ (A;rm) [V(Bre) } _ 4.4
Aim® (—AiTm) (-A e )@ (ArTe) v(Bim) | ° 4
Nonzero solutions BeC A : satisfying

[V(BV‘E)}Ker Are@(‘ArTe) (A im )@(AiTm) , always exist since

Aim®(—A-T) (-A e Jo (AT

ker | A 1e® (—ArTe) (-Aim Jo (AiTm) +{0}e R2M ? . and equivalently, since
Aim® (—AiTm) (A Jo (ArTe)
ank | A re® ( ArTe) (A im Jo (AiTm) “on?
Aim® ( A;rm) (—A re )@ (A-rre)
(4.5)
(ii) Property (ii) is equivalent to
BeCpela @ (-A%))v(B)=0 (4.6)
which has always nonzero solutions since (A ® (—A*))< n ? O

The various results of Section 3 for a set of distinct complex matrices to pair-wise
commute and for characterizing the set of complex matrices which commute with
those in a given set may be discussed by more general algebraic systems like the

_ T . T
Ajre® (_AZre) (-a jim Jo (Ajim)

above one with four block matrices
A jim ® (_A;—im) (_Aere )@ (A-jrre)

for each

jepin the whole algebraic system. Theorem 4.5 extends directly for sets of complex

matrices commuting with a given one and complex matrices commuting with a set of
commuting complex matrices as follows:

Theorem 4.6. The following properties hold:
(i) Consider the sets of nonzero distinct complex matrices A:={ AjeCc™:iecp } and

cA;:{xec”X”; {x A }:o; Aj eA,vieﬁ} for p=2. Thus, Ca>X=X,e+iX, Iff
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Aueo (-aL)  (aum)e(al,)
Alim ® (—Aﬂm) (‘Alre )@ (AlTre)
Aore® (_A;—re) (-A 2im Jo (A-Zrim) vixre) | (4.7)
A2im@(_A;im) (=2 e )@(A;re) [V Xim)} i
(

Ame® (Ake) (Apm o (AT)
T T
| Apim® (‘A pim) (<A pre Jo (Apre)

and a nonzero solution XeCa exists since the rank of the coefficient matrix of 4.7)is

less than 2n2.

(i) Consider the sets of nonzero distinct commuting complex matrices
AC:={Aiec”X”:ie5}and McAzz{xec“X”: [x ,Ai}zo;AieA,Vieﬁ} for p>2.

Thus, MCa >X=X,¢+iX e Iff v (X ) and v (Xn,) are solutions to (4.7).

(iii) Properties (i) and (ii) are equivalently formulated by from the algebraic set of
complex equations:

[A I@(—Al) A}@(—Az) A’{,@(—Apﬂ*v(x):o (4.8)

O
Remark 4.7. Note that all the proved results of Sections 2- 3 are directly extendable
for complex commuting matrices, by simple replacements of transposes by conjugate
transposes, without requiring a separate decomposition in real and imaginary parts as
discussed in Theorem 4.5(ii) and Theorem 4.6 (iii).

0

Let f:C—»C be an analytic function in an open set Do>o(A) for some matrix
AeC™M and let p(n) a polynomial fulfilling pM 0 )=f D) ; vkeo(a)
viemy -1u{0}; vkepn (the number of distinct elements in s(A), where mis the
index of A, that is its multiplicity in the minimal polynomial of A. Then, f (A) is a
function of a matrix A if f(A)=p(A), [8]. Some results follow concerning the
commutators of functions of matrices.

Theorem 4.8. Consider a nonzero matrix BeC 5o~ C"*" for any given nonzero
AeC™" . Then, f(B)eCan Cc"™", and equivalently v(f(B))eKer(A@(—A*)), for
any function f:c"*" -c"*" of the matrix B. O

The following corollaries are direct from Theorem 4.8 from the subsequent facts:
1) AeCp;vAeCc™n,
2) [A.B]=0=[A.g(B)]=0=[f(A),9(B)]
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p(a), o= & ailalg(e)]
:EO ajA ifl[A,g(B)]=O<:>g(B)ECf(A)m c nxn

where f (A)=p(A), from the definition of f being a function of the matrix A, with
p(2.)being a polynomial fulfilling p () (. )=f (V(.,); vkeo(A), Viemg -1u{o};
Vkep (the number of distinct elements in (A ), where mis the index of &, that is

its multiplicity in the minimal polynomial of A.
3) Theorem 4.8 is extendable for any countable set {f ;(B)}of matrix functions of

B.

Corollary 4.9. Consider a nonzero matrix BeC o~ C"*" for any given nonzero
Aec ™M, Then, g(B)eC¢(a)n ¢™" for any function f:c"™" »c ™" of the matrix

A and any function g:c ™" -c ™" of the matrix B. O

Corollary 4.10. f(A)ec on C™", and equivalently v(f(A))e Ker(A@(—A*)), for
any function f:c"*" -c """ of the matrix A. O

Corollary 4.11. If Bec on Cc™" then any countable set of function matrices
{fi(B)}isCaandin MC 4. O

Corollary 4.12. Consider any countable set of function matrices

Cr:={fi(A);viepjcCa for any given nonzero AeCc™" . Then,
n (ker(f(A)@ (-F;(A")) > Ker(as(-A")). =
i€“F

Note that matrices which commute and are simultaneously triangularizable through the
same similarity transformation maintain a zero commutator after such a
transformation is performed.

Theorem 4.12. Assume that BeC o~ C™", Thus, AgeC, , n C"" provided that

there exists a non-singular matrix Tec™" such that A =T !AT and
Ag=T7!BT. 0

A direct consequence of Theorem 4.12 is that if a set of matrices are simultaneously
triangularizable to their real canonical forms by a common transformation matrix
then the pair-wise commuting properties are identical to those of their respective
Jordan forms.
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