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Abstract. This paper is devoted to  derive the necessary and sufficient condition for a 
set of matrices to commute. It is proved that the commutator [ ] 0B,A =  for two 
matrices A and B if and only if a vector v (B) defined uniquely from the matrix B is in 
the null space of a well- structured matrix defined as the Kronecker sum ( )*AA −⊕ , 
which is always rank defective. This result is extendable directly to any countable set 
of commuting matrices.  
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I.  INTRODUCTION 
 
The investigation of the problem of commuting matrices is very relevant in certain 
problems of Engineering and Physics. In particular, such a problem is of crucial 
interest related to discrete Fourier transforms, normal modes in dynamic systems or 
commuting matrices dependent on a parameter (see, for instance, [1-3]). It is well-
known that commuting matrices have at least a common eigenvector and also, a 
common generalized eigenspace, [4-5]. A less restrictive problem of interest in the 
above context is that of almost commuting matrices, roughly speaking, the norm of the 
commutator is sufficiently small, [5-6]. A very relevant related result is that the sum of 
matrices which commute is an infinitesimal generator of a 0C - semigroup. This leads 
to  a well-known result in Systems Theory establishing that that the matrix function 

22112211 tAtAtAtA eee =+ is a fundamental (or state transition) matrix for the cascade of 
the time invariant differential systems ( ) ( )txAtx 111 =& , operating on a time  1t , 
and ( ) ( )txAtx 222 =& , operating on a time 2t , provided that 1A and 2A  commute (see,  
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[7-11] ).The problem of commuting matrices is also of  relevant interest in dynamic 
switched systems, namely, those which possess several parameterizations one of each 
is activated at  each current time interval.  If the matrices of dynamics of all the 
parameterizations commute then there exists a common Lyapunov function for all 
those parameterizations and any arbitrary switching rule operating at any time instant 
maintains the global stability of the switched rule provided that all the 
parameterizations are stable, [7]. However, in the case that there is no common 
Lyapunov function for all the parameterizations ,  a minimum residence time at each 
active parameterization is needed to maintain the global stability of the switched 
system so that the switching rule among  distinct parameterizations is not arbitrary, 
[12-13]. This fact implies that . Parallel results apply for switched time-delay systems 
subject to point delays under  zero or sufficiently small delays when the matrices 
defining the delay-free dynamics of the various parameterizations commute, [10-11]. 
This paper formulates the necessary and sufficient condition for any countable set of 
(real or complex) matrices to commute.  
 
1.1. Notation 
[ ]B,A  is the commutator of the square matrices A and B. 

( )Ba:BA ji=⊗  is the Kronecker (or direct) product of ( )jia:A =  and B. 
BIIA:BA nn ⊗+⊗=⊕  is the Kronecker sum of the square matrices ( )jia:A =  and both 

of order n, where nI is the n-th identity matrix.  
TA is the transpose of the matrix A and *A is the conjugate transpose of the complex 

matrix  A. For any matrix A, AIm and Ker A are its associate range (or image) 
subspace and null space, respectively. Also, rank (A) is the rank of A which is the 
dimension of Im (A) and  det (A) is the determinant of the square matrix A. 
( ) ( ) 2nTT

n
T
2

T
1 a,....,a,aAv C∈=  if ( )ni2i1i

T
i a,....,a,a:a =  is the i-th row of the square matrix 

A. 
( )Aσ  is the spectrum of A ;  { }n,...,2,1:n = . If ( )Ai σ∈λ  then there exist positive 

integers iμ and ii μ≤ν  which are, respectively, its algebraic and geometric 
multiplicity; i.e. the times it is repeated in the characteristic polynomial of A and the 
number of its associate Jordan blocks, respectively. The integer n≤μ is the number of 
distinct eigenvalues and the integer im , subject to iim1 μ≤≤ , is the index of 

( )Ai σ∈λ ; μ∈∀ i , that is, its multiplicity in the minimal polynomial of A.  
A ∼ B denotes a similarity transformation from A to TATB 1−=  for given 

nnB,A ×∈R   for some non-singular nnT ×∈R . A ≈  B = E A F means that there is an 
equivalence transformation for given nnB,A ×∈R   for some non-singular nnF,E ×∈R . 
A  linear  transformation from  nR to nR , represented by  the matrix nnT ×∈R , is 
denoted identically to such a matrix in order to simplify the notation. If 

nTDomV R≡≠  is a subspace of nR then ( ) { }Vz:zT:VTIm ∈=  and 
( ) { }n0zT:Vz:VTKer R∈=∈= . If nV R≡ , the notation is simplified to 
{ }nz:zT:TIm R∈=  and { }nn 0zT:z:TKer RR ∈=∈= . 

The symbols “∧ ” and “∨ ” stand for logic conjunction and disjunction, respectively. 
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The abbreviation “iff ” stands for “ if and only if”. 
The notation card U stands for the cardinal of the set U. 
 
 
II. COMMUTING AND NON – COMMUTING MATRICES WITH A GIVEN ONE 
 
Consider the sets [ ]{ } ∅≠=∈= × 0X,A::C nn

A RX , of matrices which commute with A,  
and [ ]{ }0X,A::C nn

A ≠∈= ×RX , of matrices which do not commute with A; 
nnA ×∈∀ R  . Note that A

nn C0 ∩∈ ×R ; i.e. the zero n- matrix commutes with any n-
matrix  so that, equivalently, A

nn C0 ∩∉ ×R  and then ∅=∩ AA CC ; nnA ×∈∀ R . The 
following two basic results follow concerning commutation and non- commutation of 
two matrices: 
 
Propositions 2.1. (i)  

( ) ( )( ){ }Tnn
A AAKerXv::C −⊕∈∈= ×RX  , and equivalently,  

[ ] ⇔= 0X,A ( ) ( )( )TAAKerXv −⊕∈ . 
 
 (ii) ( ) ( )( ){ }Tnn

A
nn

A AAKerXv:C\:C −⊕∉∈== ×× RXR  
 

( ) ( )( ){ }Tnn AAImXv: −⊕∈∈≡ ×RX , and , equivalently,  
[ ] ⇔≠ 0X,A ( ) ( )( )TAAImXv −⊕∈ .   
  
 (iii) ( ) ( )( ){ }Tnn

A AAKerXv::CB −⊕∈∈=∈ ×RX  
          ( ) ( )( ){ }Tnn

B BBKerXv::CA −⊕∈∈=∈⇔ ×RX                                                    
Proposition 2.2.  

( )( ) ( )( ) A
T2T C0AAKernAArank ∈≠−⊕⇔<−⊕  

( )( ) ( )0XAA0 T ≠∃⇔−⊕σ∈⇔ ; nnA ×∈∀ R .                                                                               
                                   
The subsequent result is stronger than Proposition 2.2.  
  
Theorem 2.3. The following properties hold: 
 (i) The spectrum of ( )TAA −⊕  is ( )( ) ( ){ }nj,i;A,:AA jijiji

T ∈∀σ∈λλλ−λ=λ=−⊕σ  
and possesses ν  Jordan blocks in its Jordan canonical form of, subject to the 

constraints ( )0Sdimn
2

1i i
2 ν≥

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
ν==ν≥ ∑

μ

=
, and ( )( )TAA0 −⊕σ∈  with an algebraic 

multiplicity ( )0μ and with a geometric multiplicity ( )0ν  subject to the constraints: 

( ) ( ) n00n
1i

2
i

1i
2
i

2

1i
i

2 ≥ν=ν≥μ≥μ≥⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
μ= ∑

μ

=
∑
μ

=
∑
μ

=
                                                                    (2.1) 

where: 
         a) { }nj,i,xzspan:S ji ∈∀⊗= , ( )ii λμ=μ  and ( )ii λν=ν are, respectively,  the 
algebraic and the geometric multiplicities of ( )Ai σ∈λ , ni∈∀ ; n≤μ  is the number of  
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distinct ( )Ai σ∈λ ( )μ∈i ,  ( )jii λμ=μ  and ( )jiji λν=ν , are, respectively,  the algebraic 
and the geometric multiplicity of ( ) ( )( )T

jiji AA −⊕σ∈λ−λ=λ , nj,i ∈∀ ; n≤μ  ,  and  

         b) jx and iz  are, respectively,  the right eigenvectors of  A and TA  with 
respective  associated      eigenvalues jλ  and iλ  nj,i; ∈∀ .   

 (ii) ( )( ) ( )( ) ( )0nAArankAAImdim 2TT ν−=−⊕=−⊕     
                                 ( )( ) ( )0AAKerdim T ν=−⊕⇔ ; nnA ×∈∀ R                              (2.2)      
                                                                                                                                         
Expressions which calculate the sets of matrices which commute and which do not 
commute with a given one are obtained in the subsequent result: 
 
 
Theorem 2.4.  The following properties hold: 
 
 (i)  ACX∈ iff ( )( ) ( ) 0XvAA T =−⊕ ⇔ ACX∈ iff 

( ) ( ) ( ) T
2

TTT
2

T Xv,AAXvFXv
11

⎟
⎠
⎞⎜

⎝
⎛−= −

12
  

for any ( ) ( )12
1

1121222 AAAAKerXv −−∈ , where 22 nnF,E ×∈R are permutation matrices 
and nnX ×∈R  and ( ) 2nXv R∈ are defined such that: 
(a) ( ) ( )XvF:Xv 1−=  ,  
 ( ) ( )( ) FAAE:AAA TT −⊕=≈−⊕ ; ACX∈∀                                                             (2.3) 

where ( ) ( ) ( ) 2nT
2

T
1

T )Xv,Xv(Xv R∈=  with ( ) ( )0
1Xv ν∈R and ( ) ( )0n

2
2

Xv ν−∈R  
 
  (b) The matrix ( ) ( )00

11A ν×ν∈R is non-singular in the block matrix partition 

( )2j,i;AmatrixBlock:A ji ∈=  with ( ) 2n0
12A ×ν∈R , ( )( ) ( )00n

21
2

A ν×ν−∈R and 
( )( ) ( )( )0n0n

22
22

A ν−×ν−∈R . 
 (ii) ACX∈ , for any given ( ) nn0A ×∈≠ R , iff   
 

( )( ) ( ) ( )MvXvAA T =−⊕                                                                                           (2.4)                              
for some ( ) nn0M ×∈≠ R such that : 
 

( )( ) ( ) ( )( ) ( )0nMv,AArankAArank 2TT ν−=−⊕=−⊕                                               (2.5) 
Also, 

( )( ) ( ) ( ){ MvXvAA:X:C Tnn
A =−⊕∈= ×R  for any  ( ) nn0M ×∈≠ R  satisfying  

            ( )( ) ( ) ( )( ) ( )}0nMv,AArankAArank 2TT ν−=−⊕=−⊕                                   (2.6) 
Also, with the same definitions of E , F and X in (i), ACX∈ iff 
( ) ( ) ( ) ( )( ) T

2
TT

11
T

2
TT

111
T Xv,AAXvAMvFXv −− −=

12
    

                                                                                                                                   (2.7) 
where ( )2Xv  is any solution of the compatible algebraic  system  
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( ) ( ) ( ) ( )1

1
11122221

1
111222 MvAAMvXvAAAA −− −=−                                                     (2.8) 

for some ( ) nn0M ×∈≠ R such that nnM,X ×∈ R   and are defined according to  
( ) ( )XvFXv =   and ( ) nn0MFMEM ×∈≠≈= R  and ( ) ( ) ( ) ( )( )TT

2
T
1 Mv,MvEMvEMv ==  .  

 
III.  PAIR-WISE COMMUTING MATRICES 

 
Consider the following sets: 
    (1) A set of nonzero 2p ≥  distinct  pair-wise commuting matrices 

[ ]{ }pj,i;0A,A:A: ji
nn

iC ∈∀=∈= ×RA  

    (2)   The set of matrices [ ]{ }Cii
nn A;0A,X:X:CM

C
ARA ∈∀=∈= × which 

commute with the  set CA  of  pair-wise commuting matrices. 
    (3)  A set of matrices [ ]{ }ARA ∈∀=∈= ×

ii
nn A;0A,X:X:C  which commute with 

a   given set of nonzero p matrices { }pi;A: nn
i ∈∀∈= ×RA which are not necessarily  

pair-wise commuting. 
The complementary sets of 

C
CM A  and AC  are 

C
CM A and AC , respectively, so that 

C
CMBnn

AR ∈∋×  if 
C

MCB A∉ and AR CBnn ∈∋× if ACB∉ . Note that 

CC ACMC =A  for a set of  pair-wise commuting matrices CA  so that the notation 

CACM is directly referred to a set of matrices which commute with all those in a set of  
pair-wise commuting matrices. The following two basic results follow concerning 
commutation and non- commutation of two matrices: 
 
Proposition 3.1. The following properties hold: 
(i) ( ) ( )( )

( )
pi;AAKerAv

pij

T
jji ∈∀−⊕∈⇔

∈≠
I  

          ( ) ( )( ) pi;AAKerAv
pj1i

T
jji ∈∀−⊕∈⇔

≤≤+
I  

(ii) Define 
( ) =:N Ci A ( ) ( ) ( ) ( )[ ]Tp

T
p1i

T
1i1i

T
1i1

T
1 AAAAAAAA −⊕−⊕−⊕−⊕ ++−− LL

( ) 22 nn1p ×−∈R . Then 
pi;A Ci ∈∀∈A  iff ( ) ( ) pi;NKerAv Cii ∈∀∈ A  

 (iii) ( ) ( )( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈−⊕∈∈=
∈

×
I

pi
Ci

T
ii

nn A;AAKerXv:X:CM
C

ARA   

                         ( ) ( ){ } { } nn
CC

nn 0CNKerXv:X
C

×× ∈⊃⊃⊃∈∈= RAAR A  
where 
  

( ) =:N CA  
( ) ( ) ( )[ ] Ci

nnp
p

T
p2

T
21

T
1 A,AAAAAA

22T
AR ∈∈−⊕−⊕−⊕ ×L   

(iv) ( ) ( )( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈−⊕∈∈=
∈

× U
pi

Ci
T
ii

nn A;AAImXv:X:CM
C

ARA         

            ( ) ( ){ }C
nn NImXv:X AR ∈∈= ×  

 



2402                                                                                                             M. De la Sen 
 
 
 (v) ( ) ( )( )

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈−⊕∈∈=
∈

× ARA i
pi

T
ii

nn A;AAKerXv:X:C I     

( ) ( ){ }AR NKerXv:X nn ∈∈= ×  
where  

( ) =:N A ( ) ( ) ( )[ ] 22T nnp
p

T
p2

T
21

T
1 AAAAAA ×∈−⊕−⊕−⊕ RL A∈iA,  

(vi) ( ) ( )( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈−⊕∈∈=
∈

× U
pi

i
T
ii

nn A;AAImXv:X:C ARA      

                                      ( ) ( ){ }AR NImXv:X nn ∈∈= ×  
 
Proof: (i)The first part of Property (i)  follows directly from Proposition 2.1 since all 
the matrices of CA  pair-wise commute and any arbitrary matrix commutes with itself 
( thus j = i may be removed from the intersections of kernels of the first double sense 
implication). The last part of Property  (i)  follows from the anti-symmetric property of 
the commutator [ ] [ ] Cjiijji A,A;0A,AA,A A∈∀==  what implies  

pi;A Ci ∈∀∈A ( ) ( )( ) Cji
pj1i

T
jji A,A;AAKerAv A∈∀−⊕∈⇔

≤≤+
I  (ii) It follows 

from its equivalence with Property (i) since ( ) ( )( )
( )
I

pij

T
jjCi AAKerNKer

∈≠
−⊕≡A . 

(iii) Property (iii) is similar to Property (i) for the whose set 
C

M A  of matrices which 
commute with the set CA  so that it contains CA and, furthermore ,  

( ) ( )( )I
pi

T
iiC AAKerNKer

∈
−⊕≡A . 

 (iv) It follows from ( )( ) ( )( )U I
pj

Cj
pj

T
jj

T
jj A;AAKerAAIm

∈ ∈
∈−⊕=−⊕ A and 

( )( ) ( )( )T
jj

T
jj

n AAImAAKer0
2

−⊕−⊕∈∋ IR  but  0 Xnn =∋×R commutes with any 

matrix in nn×R  so that 
CC

CM0CM0 nnnn
AA RR ∉∋⇔∈∋ ×× for any given CA . 

(v)-(vi) are similar to (ii)-(iv) except that the members of A do not necessarily 
commute.                  
 
Concerning Proposition 3.1 (v)-(vi), note that if ACX ∈   then  0X≠  since 

AR C0nn ∈∋× . The following result is related to the rank defectiveness of the matrix 
( )CN A  and any of their sub-matrices since CA  is a set of  pair-wise commuting 

matrices: 
 
Proposition 3.2. The following properties hold:  

( ) ( ) ( )( )T
jjCiC

2 AArankNrankNrankn −⊕≥≥> AA  ; pj,i;A Cj ∈∀∈∀ A  

and, equivalently,  
( ) ( )( ) ( ) ( )( ) ( )( ) 0AAdetNNdetNNdet T

jjCiC
T
iCC

T =−⊕== AAAA ; nj,i;A Cj ∈∀∈∀ A .                                                 
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Results related to sufficient conditions for a set of matrices to pair-wise commute are 
abundant in the literature. For instance, diagonal matrices are  pair-wise commuting. 
Any sets of matrices taking via multiplication by real scalars with any arbitrary matrix 
consist of  pair-wise commuting matrices. Any set of matrices obtained by linear 
combinations of one of the above sets consist also of  pair-wise commuting matrices. 
Any matrix commutes with any of its matrix functions etc. In the following, we 
discuss a simple, although restrictive, sufficient condition for rank defectiveness of 
( )AN  of some set A of p square real n- matrices which may be useful as a test to 

elucidate the existence of a nonzero n- square matrix which commutes with all 
matrices in this set. Another useful test obtained from the following result relies on a 
necessary condition to elucidate if the given set consists of  pair-wise commuting 
matrices. 
 
 
Theorem 3.3: Consider  any arbitrary set of nonzero n-square real matrices 

{ }p21 A,...,A,A:=A  for any integer 1p≥  and define matrices: 
( ) =:N i A  

( ) ( ) ( ) ( )[ ]Tp
T
p1i

T
1i1i

T
1i1

T
1 AAAAAAAA −⊕−⊕−⊕−⊕ ++−− LL

( ) ( ) ( ) ( )[ ]Tp
T
p2

T
21

T
1 AAAAAA:N −⊕−⊕−⊕= LA  

Then, the following properties hold: 
(i) ( )( ) ( ) ( ) 2

iii nNrankNrankAArank <≤≤−⊕ AA ; pi∈∀ . 

 (ii) ( )( ) { }0AAKer
pi

T
ii ≠−⊕

∈
I  so that: 

 ( ) AC0X ∈≠∃  , ( ) ( )( )I
pi

T
ii AAKerXvCX

∈
−⊕∈⇔∈ A  and 

( ) ( )( )U
pi

T
ii AAImXvCX

∈
−⊕∈⇔∈ A  

 (iii)  If CAA=  is  a set of pair-wise commuting matrices then  
( ) ( )( ) pi;AAKerAv

i\pj

T
jji ∈∀−⊕∈

∈
I ( ) ( )( ) pi;AAKerAv

pi

T
iii ∈∀−⊕∈⇔

∈
I  

        ( ) ( )( )
{ }

pi;AAKerAv
i\pi

T
iii ∈∀−⊕∈⇔

∈
I  

 (iv) ( ) ( )( )
⎭
⎬
⎫

⎩
⎨
⎧

∈∀−⊕∈=
∈

×
Ci

pi
T
ii

nn
C A,AAKerXv:X:M ARA I { } nn

C 0 ×∈∪⊃ RA  

with the above set inclusion being proper.                                                                      
 
Note that Theorem 3.3 (ii) extends Proposition 3.1 (v) since it is proved that 

{ } ∅≠0\C A because all nonzero ( ) AR Cdiagnn ∈λλλ=Λ∋× L for any 0≠λ∋R and any 
set of matrices A . Note that Theorem 3.3 (iii) establishes that 
( ) ( )( )

{ }
pi;AAKerAv

i\pi

T
jji ∈∀−⊕∈

∈
I  is a necessary and sufficient condition for the 

set  to be a set of commuting matrices A  being simpler to test (by taking advantage of 
the symmetry property of the commutators) than the equivalent condition: 
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( ) ( )( ) pi;AAKerAv

pi

T
jji ∈∀−⊕∈

∈
I . Further results about pair-wise commuting 

matrices or the existence of nonzero commuting matrices with a given set are obtained 
in the subsequent result based on the Kronecker sum of relevant Jordan canonical 
forms: 
 
Theorem 3.4. The following properties hold for any given set of n-square real 
matrices { }p21 A,...,A,A=A  : 

(i) The set AC  of matrices nnX ×∈R which commute with all matrices in A is defined 
by: 

( ) ( )( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛

⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ ⊗−⊕∈∈=

=

−−×
I
p

1i

T
i

1
i

T
AA

nn PPJJKerXv:X:C
ii

RA
                                                 (3.1) 

( ) ( ) ( )( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈∀−⊕∈∧⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ ⊗∈∈=

=

−×
I
p

1i

T
AAii

1
ii

nn pi;JJKerYYPPImXv:X
ii

R                                                 (3.2) 

 ( ) ( ) ( )( )( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−⊕∈⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ ⊗∈∈=

= =

−×
I I
p

1i

p

1i
T

AA
1

ii
nn

ii
JJKerY,YPPImXv:X R                                                (3.3) 

where nn
iP ×∈R is a non-singular transformation matrix such that 

ii
1

iAi PAPJA
i

−=∼ , 
iAJ being the Jordan canonical form of iA . 

 (ii) ( ){ } ( )( )( )T
AA

pi
ii

JJKerdimminCX:Xvspandim −⊕≤∈
∈

A       ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
ν=ν= ∑

ρ

=∈∈

i

1j
2
ji

pi
i

pi
min0min        

                  ( )( )0minmin i
pi1i

2
ji

pi

i
μ≤

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
μ≤

∈
∑
ρ

=∈
 

where )0(iν and jiν  are, respectively, the geometric multiplicities of 

( )( )T
ii AA0 −⊕σ∈  and ( )iji Aσ∈λ  and )0(iμ and jiμ  are, respectively, the algebraic 

multiplicities of ( )( )T
ii AA0 −⊕σ∈  and ( )iji Aσ∈λ ; ij ρ∈∀ ( the number of  distinct 

eigenvalues of iA ), pi∈∀ . 
 (iii) The set A consists of  pair-wise commuting matrices, namely AA CMC = , iff 

( ) ( )( )
( )
I
p

1ji

T
i

1
i

T
AAj PPJJKerAv

ii
=≠

−− ⎟
⎠
⎞

⎜
⎝
⎛

⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ ⊗−⊕∈ ; pj∈∀ .  Equivalent conditions 

follow from the second and third equivalent definitions of AC in Property (i).             
 
Theorem 3.3 are concerned with { } nn0CM ×∈≠ RA  for an arbitrary set of real square 
matrices A and for a pair-wise-commuting set , respectively. 
 

IV. FURTHER RESULTS AND SOME EXTENSIONS 
 
The extensions of the results for commutation of  complex  matrices  is direct in 
several ways. It is first possible to decompose the commutator in its real and 
imaginary part and then apply the results of Sections 2-3 for real matrices to both parts 
as follows. Let mier AAA i+= and mier BBB i+= be complex matrices in nn×C  with 

erA , and reB  being their respective real parts , and miA  and imB , all in nn×R their  
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respective imaginary parts and 1−=i  is  the imaginary complex unity. Direct 
computations with the commutator of A and B yield: 
 
[ ] [ ] [ ]( )mimirere B,AB,AB,A −= [ ] [ ]( )mierremi B,AB,A ++ i                        (4.1) 
 
The following three results are direct and allow to reduce the problem of commutation 
of a pair of complex matrices to the discussion of four real commutators: 
 
Proposition 4.1. ⇔∈ ACB  

[ ] [ ]( ) [ ] [ ]( )( )ermiremimimirere A,BB,AB,AB,A =∧=  
 
Proposition 4.2. 

( ) ( )( )
ermimier AAmiAAre CCBCCB ∩∈∧∩∈       

                        ACB∈⇒ .  
Proposition 4.3. 

( ) ( )( )
ermimier BBmiBBre CCACCA ∩∈∧∩∈  

                     ACB∈⇒ .                                                                                                 
 
Proposition 4.1 yields to the subsequent result: 
 
 
Theorem 4.4. The following properties hold: 
(i)  Assume that the matrices A and erB  are given. Then, ACB∈  iff miB  satisfies the 
linear algebraic equation: 

( )
( ) ( ) ( )

( ) ( )miT
erer

T
mimi

erT
mimi

T
erer

Bv
AA

AA
Bv

AA

AA

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−⊕

−⊕
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−⊕

−⊕
                                                  (4.2) 

for which a necessary condition is:  
( )
( ) =

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−⊕

−⊕
T
erer

T
mimi

AA

AA
rank  

( )
( )

( )
( ) ( )

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−⊕

−⊕

−⊕

−⊕
erT

mimi

T
erer

T
erer

T
mimi Bv

AA

AA

AA

AA
rank                                                     (4.3) 

(ii) Assume that the matrices A and imeB  are given. Then, ACB∈  iff erB  satisfies 
(4.2) for which a necessary condition is:  

( )
( ) =

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−⊕

−⊕
T
mimi

T
erer

AA

AA
rank  

( )
( )

( )
( ) ( )

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−⊕

−⊕

−⊕

−⊕
imT

erer

T
mimi

T
mimi

T
erer

Bv
AA

AA

AA

AA
rank                                                           
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A more general result than Theorem 4.4 is the following: 
 
Theorem 4.5. The following properties hold: 
 
(i) nn

ACB ×∩∈ C  iff  ( )Bv  is a  solution  to the linear algebraic system : 

( ) ( ) ( )
( ) ( ) ( )

( )
( ) 0
Bv

Bv

AAAA

AAAA

mi

er
T
erer

T
mimi

T
mimi

T
erer =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⊕−−⊕

⊕−−⊕                                                   (4.4) 

Nonzero solutions ACB∈  , satisfying 

( )
( )

( ) ( ) ( )
( ) ( ) ( ) ⎥⎥

⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⊕−−⊕

⊕−−⊕
∈
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

T
erer

T
mimi

T
mimi

T
erer

mi

er

AAAA

AAAA
Ker

Bv

Bv , always exist since 

( ) ( ) ( )
( ) ( ) ( ) { }

2n2
T
erer

T
mimi

T
mimi

T
erer 0

AAAA

AAAA
Ker R∈≠

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⊕−−⊕

⊕−−⊕ , and equivalently, since 

( ) ( ) ( )
( ) ( ) ( )

2
T
erer

T
mimi

T
mimi

T
erer n2

AAAA

AAAA
rank <

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⊕−−⊕

⊕−−⊕
          

                                                                                                                                   (4.5) 
 
 (ii) Property (ii) is equivalent to   
 ACB∈ ( )( ) ( ) 0BvAA * =−⊕⇔                                                                              (4.6) 

which has always nonzero solutions  since ( )( ) 2* nAA <−⊕                                                                   
The various results of Section 3 for a set of distinct complex matrices to pair-wise 
commute and for characterizing the set of complex matrices which commute with 
those in a given set may be discussed by more general algebraic systems like the 

above one with  four block matrices 
( ) ( ) ( )
( ) ( ) ( )

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⊕−−⊕

⊕−−⊕

T
ejrer2

T
mi2mji

T
mjimji

T
er2ejr

AjAAA

AAAA
 for each  

 
pj∈ in the whole algebraic system. Theorem 4.5 extends directly for sets of complex 

matrices commuting with a given one and complex  matrices commuting with a set of   
commuting  complex matrices  as follows: 
 
 
Theorem 4.6. The following properties hold: 
(i) Consider the sets of nonzero distinct complex matrices { }pi:A: nn

i ∈∈= ×CA  and 

⎭
⎬
⎫

⎩
⎨
⎧

∈∀∈=⎥⎦
⎤

⎢⎣
⎡∈= × pi,A;0A,X:X:C ii

nn ACA  for 2p≥ . Thus, erer XXXC iA +=∋  iff 
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( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( )
( ) 0
Xv

Xv

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

mi

er

T
eprepr

T
mpimpi

T
mpimpi

T
eprepr

T
er2er2

T
mi2mi2

T
mi2mi2

T
er2er2

T
er1er1

T
mi1mi1

T
mi1mi1

T
er1er1

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⊕−−⊕

⊕−−⊕

⊕−−⊕

⊕−−⊕

⊕−−⊕

⊕−−⊕

M

                                                    (4.7) 

and a nonzero solution ACX∈ exists since the rank of the coefficient matrix of (4.7) is 
less than 2n2 .   
 
(ii) Consider the sets of nonzero distinct  commuting complex matrices 

{ }pi:A: nn
iC ∈∈= ×CA  and 

⎭
⎬
⎫

⎩
⎨
⎧

∈∀∈=⎥⎦
⎤

⎢⎣
⎡∈= × pi,A;0A,X:X:CM ii

nn ACA  for 2p≥ . 

Thus, erer XXXCM iA +=∋  iff  )(X v re and  )(X v mi are solutions to (4.7). 
 (iii) Properties (i) and (ii) are equivalently formulated by from the algebraic set of 
complex equations: 

( ) 0XvAAAAAA
*

p
*
p2

*
21

*
1 =⎥⎦

⎤
⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛−⊕⎟

⎠
⎞⎜

⎝
⎛ −⊕⎟

⎠
⎞⎜

⎝
⎛ −⊕ L                                                     (4.8)    

          
                                                                                                                                
Remark 4.7.  Note that all the proved  results of Sections 2- 3 are directly extendable 
for complex commuting matrices, by simple replacements of transposes by conjugate 
transposes,  without requiring a separate decomposition in real and imaginary parts as 
discussed in Theorem 4.5(ii) and Theorem 4.6 (iii).    
                                                                                                                                         
Let CC→:f  be an analytic function in an open set ( )Aσ⊃D  for some matrix 

nnA ×∈C and let ( )λp a polynomial fulfilling ( ) ( ) ( ) ( )k
i

k
i fp λ=λ ; ( )Ak σ∈∀ , 

{ }01mi k ∪−∈∀ ; μ∈∀k (the number of distinct elements in ( )Aσ , where km is the 
index of kλ , that is its multiplicity in the minimal polynomial of A. Then, f (A) is a 
function of a matrix A if (A) p  (A) f = , [8]. Some results follow concerning the 
commutators of functions of matrices. 
 
 
Theorem 4.8. Consider a nonzero  matrix nn

ACB ×∩∈ C for any given  nonzero 
nnA ×∈C . Then, ( ) nn

ACBf ×∩∈ C ,  and equivalently  ( )( ) ( )( )*AAKerBfv −⊕∈ , for 
any function nnnn:f ×× →CC   of the matrix B.                                                               
 
The following corollaries are direct from Theorem 4.8 from the subsequent facts: 
  1)   nn

A A;CA ×∈∀∈ C .  
2)  [ ] ( )[ ] ( ) ( )[ ]Bg,Af0Bg,A0B,A ⇒=⇒=  
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( ) ( )[ ] ( )[ ]∑
μ

=
α==

0i
i

i Bg,ABg,Ap  

( )[ ] ( ) ( )
nn

Af
0i

1i
i CBg0Bg,AA ×μ

=

− ∩∈⇔=α= ∑ C   

where (A) p  (A) f = , from the definition of f being a function of the matrix A, with 
( )λp being a polynomial fulfilling ( ) ( ) ( ) ( )k

i
k

i fp λ=λ ; ( )Ak σ∈∀ , { }01mi k ∪−∈∀ ; 
μ∈∀k (the number of distinct elements in ( )Aσ , where km is the index of kλ , that is 

its multiplicity in the minimal polynomial of A. 
  3)  Theorem 4.8 is extendable for any countable set ( ){ }Bf i of matrix functions of 
B. 
 
Corollary 4.9. Consider a nonzero matrix nn

ACB ×∩∈ C for any given  nonzero 
nnA ×∈C . Then, ( ) ( ) nn

AfCBg ×∩∈ C  for any function nnnn:f ×× →CC   of the matrix 

A and any  function nnnn:g ×× →CC   of the matrix B.                                                                              
 
Corollary 4.10. ( ) nn

ACAf ×∩∈ C , and equivalently  ( )( ) ( )( )*AAKerAfv −⊕∈ , for 
any function nnnn:f ×× →CC   of the matrix A.                                                                                          
 
Corollary 4.11. If nn

ACB ×∩∈ C  then any countable set of function matrices 
( ){ }Bf i  is AC and in ACM .                                                                                                                      

 
Corollary 4.12. Consider any countable set of function matrices 

( ){ } AiF Cpi;Af:C ⊂∈∀= for any given nonzero nnA ×∈ C .  Then, 
( ) ( )( )( )( ) ( )( )*

C
ii AAKer

f
*AfAfKer

Fi

−⊕⊃−⊕
∈
I  .                   

Note that matrices which commute and are simultaneously triangularizable through the 
same similarity transformation maintain  a zero commutator after such a 
transformation is performed. 
 
Theorem 4.12. Assume that nn

ACB ×∩∈ C , Thus, nn
B A

C ×
Λ ∩∈Λ C  provided that 

there exists a non-singular matrix nnT ×∈ C  such that TAT 1
A

−=Λ and 
TBT 1

B
−=Λ .                             

 
 
A direct consequence of Theorem 4.12 is that if a set of matrices are simultaneously 
triangularizable to their   real canonical forms by a common transformation matrix 
then the pair-wise commuting properties are identical to those of their respective 
Jordan forms.  
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