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Abstract

In this paper, we suggest and analyze a new four-step iterative method
for solving nonlinear equations involving only first derivative of the function
using a new decomposition technique which is due to Noor [11] and Noor
and Noor [16]. We show that this new iterative method has fifth-order of
convergence. Several numerical examples are given to illustrate the efficiency
and performance of the new method and a comparison to other results is also
presented in this paper.
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1. Introduction
In recent years, many researchers have been paid attention to propose and study

several iterative methods for solving nonlinear equations, see [1-16]. Abbasbandy
[1] and Chun [5] have proposed and studied several one-step and two-step iterative
methods using the Adomian decomposition method [2]. Noor [11] and Noor and
Noor [16] have considered another decomposition technique which does not involve
the derivative of the Adomian polynomial. Noor and Noor [15] used this alternative
decomposition to construct one-step, two-step and three-step iterative methods for
solving nonlinear equations. In this paper, we use the alternative decomposition
technique proposed in [11] and [16] to construct four-step iterative method for solving
nonlinear equations involving only the first derivative of the function.
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In Section 2, we outline the main ideas of the alternative decomposition technique
and develop the four-step iterative method for solving nonlinear equation. The
convergence analysis of this new iterative method will be presented in Section 3.
Several numerical examples are given in Section 4 to illustrate the efficiency and the
accuracy of the new proposed iterative method. A comparison of our results with
other results will be presented also in this section. Some conclusions are pointed in
Section 5.

2. Iterative Algorithms
Consider the nonlinear equation

f(x) = 0. ((2.1))

We assume that f(x) has a simple root at α and γ is initial guess sufficiently
close to α. Equation (2.1) can be convert into the following coupled system,

f(γ) + f� (γ) (x − γ) + g(x) = 0, ((2.2))

g(x) = f(x) − f (γ) − f� (γ) (x − γ), ((2.3))

where γ is the initial approximation for a zero of (2.1).

Equation (2.2) can be rewritten in the following form:

x = c + N(x), ((2.4))

where

c = γ − f (γ)

f�(γ)
((2.5))

and

N(x) = − g(x)

f� (γ)
. ((2.6))

We note that if x0 is the initial guess, then one can observe that
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f (x0) = g (x0) . ((2.7))

Noor and Noor [15] constructed a sequence of high-order iterative method by
using a decomposition method which is due to Noor [11] and Noor and Noor [16].
This decomposition of the nonlinear operator N(x) is quite different than that of
the Adomian decomposition.

The main idea of this technique is to look for a solution of equation (2.4) having
the series form:

x =

∞∑
i=0

xi. ((2.8))

The nonlinear operator N can be decomposed as

N

( ∞∑
i=0

xi

)
= N (x0) +

∞∑
i=1

{
N

(
i∑

j=0

xj

)}
. ((2.9))

Upon substituting equations (2.8), and (2.9) into (2.4) yields

∞∑
i=0

xi = c + N (x0) +

∞∑
i=1

{
N

(
i∑

j=0

xj

)}
. ((2.10))

Thus we have the following iterative scheme:

x0 = c

x1 = N (x0)

x2 = N (x0 + x1)

...
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xn+1 = N (x0 + x1 + ... + xn) , n = 1, 2, ... ((2.11))

It can be shown that the series
∞∑
i=0

xi converges absolutely and uniformly to a

unique solution of equation (2.4).

x = c +

∞∑
i=1

xi. ((2.12))

Therefore, x is approximated by

Xn = x0 + x1 + ... + xn−1, ((2.13))

where Lim
n→∞

Xn = x.

For n = 0,

x ≈ X0 = x0 = c = γ − f (γ)

f� (γ)
, ((2.14))

This allows us to suggest the following one-step iterative method for solving the
nonlinear equation (2.1).

Algorithm 1 2.1. For a given x0, compute the approximate solution xn+1 by the
iterative scheme:

xn+1 = xn − f (xn)

f� (xn)
, f� (xn) �= 0, n = 0, 1, 2, ....

which is known as Newton method and has a second order convergence.
Using (2.13) with n = 1, we obtain

x ≈ X1 = x0 + x1 = c + N (x0) = γ − f (γ)

f� (γ)
− f (x0)

f� (γ)
.

Using this relation, we suggest the following two-step iterative method for solving
nonlinear equation (1.1).

Algorithm 2 2.2. For a given x0, compute the approximate solution xn+1 by the
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iterative scheme:

yn = xn − f (xn)

f� (xn)
, f� (xn) �= 0,

xn+1 = xn − f (xn)

f� (xn)
− f (yn)

f� (xn)
, n = 0, 1, 2, ...

It is worth to mention here that Algorithm (2.2) was obtained by Chun [5] using
the Adomian decomposition method. It has been shown in [5] that Algorithm (2.2)
has cubic convergence.

By using (2.11) with n = 2, we can conclude that

x2 = N (x0 + x1) = −g (x0 + x1)

f� (γ)
= −f (x0 + x1)

f� (γ)
. ((2.15))

Therefore, by using (2.13) and (2.15) with n = 2, we get

x ≈ X2 = x0 + x1 + x2 = c + N (x0) + N (x0 + x1) = γ − f (γ)

f� (γ)
− f (x0)

f� (γ)
− f (x0 + x1)

f� (γ)
.

((2.16))

Using this relation, we can suggest the following three-step iterative method for
solving nonlinear equation (2.1).

Algorithm 3 2.3. For a given x0, compute the approximate solution xn+1 by the

iterative schemes:

yn = xn − f (xn)

f� (xn)
, f� (xn) �= 0,

zn = − f (yn)

f� (xn)
,

xn+1 = xn − f (xn)

f� (xn)
− f (yn)

f� (xn)
− f (yn + zn)

f� (xn)
, n = 0, 1, 2, ...
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Algorithm 2.3 is called the three-step iterative method for solving nonlinear
equation (2.1). This algorithm was obtained by Noor and Noor [15]. It has been
shown in [15] that Algorithm (2.3) has fourth order convergence.

Finally use (2.11) with n = 3, we conclude that

x3 = N (x0 + x1 + x2) = γ − f (γ)

f� (γ)
− f (x0)

f� (γ)
− f (x0 + x1)

f� (γ)
− f (x0 + x1 + x2)

f� (γ)
.

((2.17))

Therefore, by using (2.13) and (2.17) with n = 3, we get

x ≈ X3 = x0 + x1 + x2 + x3 = c + N (x0) + N (x0 + x1) + N (x0 + x1 + x2)
((2.18))

= γ − f (γ)

f� (γ)
− f (x0)

f� (γ)
− f (x0 + x1)

f� (γ)
− f (x0 + x1 + x2)

f� (γ)
.

Using this, we can suggest and analyze the following four-step iterative method
for solving nonlinear equation (2.1), and this is the main motivation of this paper.

Algorithm 4 2.4. For a given x0, compute the approximate solution xn+1 by the

iterative schemes:

yn = xn − f (xn)

f� (xn)
, f� (xn) �= 0, ((2.19))

zn = − f (yn)

f� (xn)
, ((2.20))

kn = −f (yn + zn)

f� (xn)
, ((2.21))

xn+1 = xn − f (xn)

f� (xn)
− f (yn)

f� (xn)
− f (yn + zn)

f� (xn)
− f (yn + zn + kn)

f� (xn)
, n = 0, 1, 2, ...

((2.22))

This algorithm is called the four-step iterative method for solving the nonlinear
equation (2.1). In the next section, we will show that Algorithm (2.4) has fifth order
convergence. It is worth to mention here that the new iterative method is free from
the second or higher derivatives. Moreover, per any iteration of the new iterative
method requires four function and first derivative evaluations. Algorithm (2.4) can
be re-considered as a predictor-corrector iterative method as follows:
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Algorithm 5 2.5. For a given x0, compute the approximate solution xn+1 by the

iterative schemes:
Predictor steps:

yn = xn − f (xn)

f� (xn)
, f� (xn) �= 0,

zn = − f (yn)

f� (xn)
,

kn = −f (yn + zn)

f� (xn)
,

Corrector step:

xn+1 = yn + zn + kn − f (yn + zn + kn)

f� (xn)
, n = 0, 1, 2, ... ((2.23))

3. Convergence Analysis
In this paper, we have proposed a new four-step iterative method (Algorithm

2.4) for solving nonlinear equation (2.1). In this section, we study the convergence
analysis of Algorithm 2.4.

Theorem 3.1: Let α be a simple zero of a sufficiently differentiable function
f : I → R for an open interval I. Then, the new four-step iterative method defined
in Algorithm 2.4 has the fifth-order convergence and satisfies the following error
equation

en+1 = 8c4
2e

5
n + O

(
e6

n

)
,

where en = xn − α and c2 = f(2)(α)
2f�(α)

.

Proof: Let α be a simple zero of f and en = xn − α. By expanding f (xn) and
f� (xn) about α, we obtain

f (xn) = f� (α)
[
en + c2e

2
n + c3e

3
n + c4e

4
n + c5e

5
n + ...

]
((3.1))
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f� (xn) = f� (α)
[
1 + 2c2en + 3c3e

2
n + 4c4e

3
n + 5c5e

4
n + ...

]
((3.2))

where ck = f(k)(α)
k!f�(α)

, for k = 1, 2, 3, ....

From (3.1) and (3.2), we have

f (xn)

f� (xn)
= en − c2e

2
n + 2

(
c2
2 − c3

)
e3

n +
(
7c2c3 − 3c4 − 4c3

2

)
e4

n + ... ((3.3))

From (2.19) and (3.3), we have

yn = xn − f (xn)

f� (xn)
= α + c2e

2
n + 2

(
c3 − c2

2

)
e3

n +
(
3c4 + 4c3

2 − 7c2c3

)
e4

n + ...

((3.4))

By expanding f (yn) about α and using equation (3.4), we have

f (yn) = f� (α)
[
c2e

2
n +

(
2c3 − 2c2

2

)
e3

n +
(
3c4 + 5c3

2 − 7c2c3

)
e4

n + ...
]

((3.5))

Now from (2.20) , (3.2) and (3.5), we have

zn = − f (yn)

f� (xn)
= −c2e

2
n − 2

(
c3 − 2c2

2

)
e3

n − (3c4 + 13c3
2 − 14c2c3

)
e4

n + ... ((3.6))

Now by expanding f (yn + zn) about α,we get

f (yn + zn) = f� (α)
[
2c2

2e
3
n +

(
7c2c3 − 9c3

2

)
e4

n + ...
]

((3.7))

From (2.21), (3.2) and (3.7), we have

kn = −f (yn + zn)

f� (xn)
= −2c2

2e
3
n +

(
13c3

2 − 7c2c3

)
e4

n + ... ((3.8))

Now by expanding f (yn + zn + kn) about α, we get

f (yn + zn + kn) = f� (α)
[(

17c3
2 − 13c2

2

)
e4

n + ...
]

((3.9))

From (3.2) and (3.9), we have

−f (yn + zn + kn)

f� (xn)
= −4c3

2e
4
n + 8c4

2e
5
n + .... ((3.10))
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From (2.22), (3.4), (3.6) and (3.10), we have

en+1 = xn+1 − α = 8c4
2e

5
n + .... ((3.11))

This shows that Algorithm (2.4) has fifth order convergence.

4. Numerical Examples
In this section, we present some numerical examples to illustrate the efficiency

and the accuracy of the new developed iterative method in this paper. These ex-
amples are chosen from Chun[5]. We compare our results obtained in this paper
(Algorithm 2.4) with Newton’s method (NM), the method of Abbasbandy[1] (AM),
the method of Homeier [7] (HM), and the methods of Chun [5] (CM2 is referred
to method 10 in Chun [5] with fourth-order convergence) and (CM3 is referred to
method 11 in Chun [5] with fifth-order convergence), the method of Noor and Noor
[15] (NR), the comparisons are given in Tables (1) and (2).

All computations were done using MAPLE using 64 digit floating-point arith-
metic. The follwoing stopping criteria is used for computer programs:

(i) |xn+1 − xn| < ε.
(ii) |f (xn+1)| < ε.
We used ε = 10−15 and the numerical test examples are:

f1(x) = sin2 x − x2 + 1,

f2(x) = x2 − ex − 3x + 2,

f3(x) = cosx − x,

f4(x) = (x − 1)3 − 1,

f5(x) = x3 − 10,

f6(x) = xex2 − sin2 x + 3 cosx + 5,
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f7(x) = ex2+7x−30 − 1.

As for the convergence criteria, it was required that the distance of two con-
secutive approximations δ for the zero was less than 10−15. Also displayed are the
number of iterations to approximate the zero (IT), the approximate zero xn and the
value of f (xn) .

5. Conclusion

In this paper, we have developed a new iterative method for solving nonlinear
equations and proved that the method has fifth-order convergence. The derivation of
the method is based on the decomposition due to Noor [11] and Noor and Noor [16].
This new iterative method is free from the second or higher derivatives. Moreover,
per any iteration of the new iterative method requires only four function and first
derivative evaluations. This gives one of the advantages of this new method. From
the comparison of the results in Tables (1) and (2) of this new iterative method
with other methods reflects that the results we have obtained from this new iterative
method are efficient and have high accuracy.
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Table (1) Comparison of various iterative schemes and the Newton
method

IT xn f (xn) δ
f1, x0 = 1

NM
AM
HM
CM2
CM3
NR

Algorithm 2.4

7
5
4
5
4
4
5

1.4044916482153412260350868178
1.4044916482153412260350868178
1.4044916482153412260350868178
1.4044916482153412260350868178
1.4044916482153412260350868178
1.4044916482153412260350868178
1.4044916482153412260350868178

−1.04e − 50
−5.81e − 55
−5.4e − 62
−2.0e − 63
−2.0e − 63
−1.3e − 40
−5.76e − 29

7.33e − 26
1.39e − 18
7.92e − 21
1.31e − 17
1.41e − 22
5.4e − 41
2.32e − 29

f2, x2 = 2
NM
AM
HM
CM2
CM3
NR

Algorithm 2.4

6
5
5
4
4
4
3

0.2575302854398607604553673094
0.2575302854398607604553673094
0.2575302854398607604553673094
0.2575302854398607604553673094
0.2575302854398607604553673094
0.2575302854398607604553673094
0.2575302854398607604553673094

2.93e − 55
1.0e − 63

0
1.0e − 63

0
9.3e − 28

−8.95e − 54

9.1e − 28
1.45e − 26
9.33e − 43
9.46e − 29
1.61e − 53
2.5e − 28
2.37e − 54

f3, x0 = 1.7
NM
AM
HM
CM2
CM3
NR

Algorithm 2.4

5
4
4
4
3
3
3

0.73908513321516064165531208767
0.73908513321516064165531208767
0.73908513321516064165531208767
0.73908513321516064165531208767
0.73908513321516064165531208767
0.73908513321516064165531208767
0.73908513321516064165531208767

−2.03e − 32
−7.14e − 47
−5.02e − 59

0
0

−3.7e − 54
0

2.34e − 16
8.6e − 16
9.64e − 20
1.86e − 53
5.49e − 20
2.4e − 54

0
f4, x0 = 3.5

NM
AM
HM
CM2

8
5
5
5

2
2
2
2

2.06e − 42
0
0
0

8.28e − 22
4.3e − 22
1.46e − 24
2.47e − 24
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Table (2) Comparison of various iterative schemes and the Newton method

IT xn f (xn) δ
f4, x0 = 3.5

CM3
NR

Algorithm 2.4

f5, x0 = 1.5
NM
AM
HM
CM2
CM3
NR

Algorithm 2.4

5
5
4

7
5
4
5
5
4
4

2
2
2

2.1544346900318837217592935665
2.1544346900318837217592935665
2.1544346900318837217592935665
2.1544346900318837217592935665
2.1544346900318837217592935665
2.1544346900318837217592935665
2.1544346900318837217592935665

0
1.75e − 24
6.26e − 57

2.06e − 54
−5.0e − 63
−5.0e − 63
−5.0e − 63
−5.0e − 63
8.1e − 45

−5.19e − 47

4.76e − 50
5.8e − 24
2.09e − 57

5.64e − 28
1.18e − 25
9.8e − 23
1.57e − 22
1.2e − 21
5.8e − 46
3.73e − 48

f6, x0 = −2
NM
AM
HM
CM2
CM3
NR

Algorithm 2.4

9
6
6
6
5
5
5

−1.2076478271309189270094167584
−1.2076478271309189270094167584
−1.2076478271309189270094167584
−1.2076478271309189270094167584
−1.2076478271309189270094167584
−1.2076478271309189270094167584
−1.2076478271309189270094167584

−2.27e − 40
−4.0e − 63
−4.0e − 63
−4.0e − 63
1.3e − 62
−1.0e − 37
−4.0e − 63

2.73e − 21
4.35e − 45
2.57e − 32
2.15e − 36
1.1e − 18
4.9e − 39

0
f7, x0 = 3.5

NM
AM
HM
CM2
CM3
NR

Algorithm 2.4

13
7
8
8
7
7
7

3
3
3
3
3
3
3

1.52e − 47
−4.33e − 48
2.0e − 62
2.0e − 62
−2.0e − 62
5.0e − 25

0

4.2e − 25
2.25e − 17
2.43e − 33
2.12e − 23
3.36e − 16
3.8e − 26

0
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