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Abstract
The objective of this paper is to compare estimators which are a

function of sample averages (a modification of Fan’s estimators) based
on different sample sizes for all symmetric stable distributions with ex-
ponent α (0 < α ≤ 2), according to the Pitman’s measure of closeness
criterion.
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1 Introduction

Statistical modeling is usually based on special assumptions on the distribu-
tion of the parent population. The well known assumption is normality. But
in many situations we come across in the real world, the normality is not an
appropriate model. It has been found that in many fields of telecommunica-
tions, hydrology, biology and sociology; the normal distributions can not be
used to describe the data set. Since, empirical studies show so many outliers.
It is also known that the fluctuation of Stock returns, were originally supposed
to follow a normal distribution or mixtures of normal distributions can not be
explained by a normal white noise and the underlying distribution must posses
a much fatter tail than a normal distribution.

Mandelbrot and Taylor ( 1967) and Fama (1965) suggested to use stable
distributions with tail index 0 < α < 2 to model stock prices. The α -stable
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distributions are a special type of heavy tailed distributions with tail index α,
where 0 < α < 2. The stable distributed samples are only rarely observed in
practice and it is more suitable to model the observations with distributions
in the domain of attraction of some stable law. Tail indices persist under
convolutions and stable distributions appear limit laws of properly normalized
means. For this reason, estimation of tail indices of heavy tail distributions
has been an important field of research. Fama and Roll (1968), Press (1972),
Zolotarev (1986), Hill (1975), Pickands (1975), De Haan and Resnick (1980),
Csorgo et al. (1985), De Haan and Pereira (1999), Meerschaert and Scheffler
(1998) and Fan (2004) have proposed different methods of estimating the tail
index. None of these estimators is perfect. From different point of views,
each one has some disadvantages. Indeed, they can hardly be used simply and
effectively in practice, see Fan (2004). An easy-to-calculate estimate is given
by Fan (2004).

In this paper we introduce a modification of the Fan’s estimators and then
will compare this estimator based on different sample sizes for all symmetric
stable distributions with exponent α(0 < α < 2) according to the Pitman’s
measure of closeness criterion. Our findings indicate that for 0 < α < 1 ,
log |Xn+m|

log n
+ 1 is not necessarily Pitman-closer than log |Xn|

log n
+ 1 for all n > 1 and

m > 1, but for 1 < α < 2 , log |Xn+m|
log n

+ 1 is Pitman-closer than log |Xn|
log n

+ 1 for
all n > 1 and m > 1.

2 Main Results

First, we begin with the notion of Pitman’s measure of closeness (PMC in
short). The PMC criterion (Pitman, 1937) has received a great deal of atten-
tion in recent years and has existed a criterion for more than sixty years. It
is an alternative to mean square error in comparison of estimators. According
to the PMC criterion, rival estimators are usually compared two at a time.

Let θ(∈ Θ) be the parameter of interest. For estimating θ consider two
rival estimators θ̂1 and θ̂2 . The PMC of θ̂1 relative to θ̂2 is the probability
that the estimator θ̂1 is closer than the estimator θ̂2 to the parameter θ . That
is,

P (θ̂1, θ̂2|θ) = Pr(|θ̂1 − θ| < |θ̂2 − θ|).
The estimator θ̂1 is Pitman - closer than θ̂2 whenever

P (θ̂1, θ̂2|θ) ≥ 1/2, ∀θ ∈ Θ,

with strict inequality holding for at least one θ .

Let us start with the sequence of i.i.d. strictly α - stable random variables
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X1, X2, ...., Xn, ... The sum-preserving property of stable laws says

X1 + X2 + .... + Xn

n1/α

d
= X1

This Leads to

log n

⎡
⎢⎢⎣

log | n∑
i=1

Xi|
log n

− 1

α

⎤
⎥⎥⎦ d

= log |X1| .

Let

α̂−1
n :=

log | n∑
i=1

Xi|
log n

=
log |Xn|

log n
+ 1, (2.1)

then α̂−1
n −→ α−1 in probability as n → ∞. This estimator is introduced by Fan

(2004). In the following we compare sample averages of a modification of this
estimator based on different sample sizes for all symmetric stable distributions
with tail index α ( 0 < α < 2 ) according to PMC. Our approach is based on the
work of Bose, Datta and Ghosh (1993) and heavily based the following results.
They showed that if X1, ..., Xn are independent and identically distributed,
each symmetric about μ, X1 having a stable density with exponent α, then

Pθ(|Xn+m − μ| ≤
∣∣∣Xn − μ

∣∣∣) = 2

∞∫
◦

[FX1(u
α−1

α x) − FX1(−
u + 2

u
u

α−1
α x]dFX1(x),

(2.2)
where u = m

n
.

We have used this result for expressing our main result. First we introduce

a modification of Fan’s estimators by α̃−1
n+m := log |Xn+m|

log n
+ 1 .

Theorem 2.1 Let X1, ..., Xn be independent and identically distributed, each
symmetric about 0, X1 having a stable density with exponent α . Then

(i) If 0 < α < 1 , then α̃−1
n+m := log |Xn+m|

log n
+ 1 is Pitman-closer to 1

α
than

α̂−1
n = log |Xn|

log n
+ 1 for m ≤ n.

(ii) If 1 < α < 2 , then α̃−1
n+m = log |Xn+m|

log n
+ 1 is pitman closer to 1

α
than

α̂−1
n = log |Xn|

log n
+ 1 for all n > 1 and m > 1.

Proof.
(i) First consider the case 0 < α < 1. It follows now from (2.2) that if

m ≤ n so that u ≤ 1, using the symmetry of FX1 ,

P (|α̃−1
n+m − 1

α
| ≤ |α̂−1

n − 1

α
|) = P (| log |Xn+m|

log n
+ 1 − 1

α
| ≤ | log |Xn|

log n
+ 1 − 1

α
|)
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≥ P (
log |Xn+m|

log n
≤ log |Xn|

log n
)

≥ P (log|Xn+m|
n ≤ log|Xn|

n )

= P (|Xn+m| ≤ |Xn|)
≥ 2

∫ ∞

◦
[2Fx1(u

1− 1
α x) − 1]dFx1(x)

≥ 2
∫ ∞

◦
[2Fx1(x) − 1]dFx1(x)

=
1

2
.

So that α̃−1
n+m = log |Xn+m|

log n
+1 (m ≤ n) is Pitman-closer than α̂−1

n = log |Xn|
log n

+
1 .

(ii) Next consider 1 < α < 2. If m ≥ n, i.e. if u ≥ 1.

P (|α̃−1
n+m − 1

α
| ≤ |α̂−1

n − 1

α
|) = P (| log |Xn+m|

log n
+ 1 − 1

α
| ≤ | log |Xn|

log n
+ 1 − 1

α
|)

≥ P (
log |Xn+m|

log n
≤ log |Xn|

log n
)

= P (log|Xn+m|
n ≤ log|Xn|

n )

= P (|Xn+m| ≤ |Xn|)
≥ 2

∫ ∞

0
[2FX1(u

1− 1
α

x) − 1]dFX1(x)

≥ 2
∫ ∞

0
[2FX1(x) − 1]dFX1(x)

=
1

2

i.e. α̃−1
n+m = log |Xn+m|

log n
+ 1 is pitman closer than α̂−1

n = log |Xn|
log n

+ 1 . If m < n ,
i.e. u < 1, using the symmetry of FX1 , it follows form 2.2 that

P (|α̃−1
n+m − 1

α
| ≤ |α̂−1

n − 1

α
) = P (| log |Xn+m|

log n
+ 1 − 1

α
| ≤ | log |Xn|

log n
+ 1 − 1

α
|)

≥ P (|Xn+m| ≤ |Xn|)
= 2

∫ ∞
◦

[FX1(u
1− 1

α

x) + FX1(
u + 2

u
u1− 1

αx) − 1]dFX1(x)

= 2
∫ ∞
◦

[2FX1(x) − 1]dFX1(x) + 2
∫ ∞

0
[FX1(

u + 2

u
u

1− 1
α

x)

−FX1(x)]dFX1(x) − 2
∫ ∞

◦
[FX1(x) − FX1(u

1− 1
α

x)]dFX1(x)



On comparison of the tail index 913

=
1

2
+

1

2

∫ ∞
◦

[G(
u + 2

u
u

1− 1
α

x) − G(x)] dG(x)

−1

2

∫ ∞

0
[G(x) − G(u

1− 1
α

x)] dG(x)

=
1

2
+

1

2
P (W2 ≤ W1 ≤ u + 2

u
u

1− 1
α

W2)

−1

2
P (W1u

1− 1
α ≤ W2 ≤ W1)

≥ 1

2
+

1

2
P (W2 ≤ W1 ≤ W2u

−1/α) − 1

2
P (W2 ≤ W1 ≤ W2u

−1+1/α)

=
1

2
+

1

2
P (W2u

−1+1/α ≤ W1 ≤ W2u
−1/α)

≥ 1

2
,

where W1, W2 are two i.i.d non-negative random variables having common
distribution function G(x) = 2FX1(x) − 1, 0 ≤ x < ∞.

Thus, for 1 < α < 2 , α̃−1
n+m = log |Xn+m|

log n
+ 1 is Pitman-closer to 1

α
than

α̂−1
n = log |Xn|

log n
+ 1 for all n > 1 and m > 1 .

Remark 2.1 In case 0 < α < 1 , it is not necessary true that α̃−1
n+m =

log |Xn+m|
log n

+1 is Pitman closer than α̂−1
n = log |Xn|

log n
+1 for all m ≥ 1. For example,

as m → ∞, n fixed, u → ∞ and so u1− 1
α → 0 since 0 < α < 1. Then

P (| log |Xn+m|
log n

+ 1 − 1

α
| ≤ | log |Xn|

log n
+ 1 − 1

α
| ) → 0 , as m → ∞,

for fixed n .
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