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Abstract 

Geomorphological landforms are generally viewed as Boolean objects. However, recent 

studies have shown that landforms are more suitable to be viewed as fuzzy objects, 

whereby a landform is defined as a region in the continuum of variation of the surface of 

the earth. In this paper, the fuzzy classification of physiographic features extracted from 

multiscale DEMs is performed. First, the lifting scheme is used to generate multiscale 

DEMs. The three predominant physiographic features, mountains, basins and piedmont 

slopes, are extracted from the generated multiscale DEMs. Fuzzy classification is 

performed based on by the average of Boolean memberships of the extracted 

physiographic features over the scales of measurement. Using the generated fuzzy 

memberships, the dominant physiographic features, and their variances, are computed. 

The proposed fuzzy classification method is useful for statistical analyses and 

determination of sample schemes. 

Keywords: multiscale DEMs, physiograhic features, the lifting scheme, fuzzy 

classification, entropy 
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1 Introduction 
 
 In Boolean set theory, if an object belongs to a set, it is assigned an integer value 

of 1 as membership for that set. If the object does not belong to that set, it is assigned 

with a membership of 0. In fuzzy set theory, a core concept is defined and objects which 

exactly match that core concept are assigned with a class membership of 1. The 

membership is assigned a reducing real number for objects as they are increasingly 

dissimilar from that core concept until they have no similarity with the core concept, 

when the membership is assigned a value of 0 [36].  

 Geomorphological landforms are generally viewed as Boolean objects. However, 

recent studies have shown that landforms are more suitable to be viewed as fuzzy objects, 

whereby a landform is defined as a region in the continuum of variation of the surface of 

the earth [1-3, 11-15, 24, 25, 31, 32]. In general, three approaches have been employed to 

perform the fuzzy classification of various landforms. The first approach, known as the 

semantic import model, uses a priori knowledge, such as height, to assign a value of 

fuzzy membership to a landscape feature with a particular metric property [8]. Usery [31] 

determines the fuzziness of Stone Mountain, Georgia, using the height above a certain 

elevation as a membership function, with membership increasing with height. Cheng and 

Molenaar [4, 5] use height to determine membership functions of separate elements of 

dynamic beach landforms. The second approach, known as the similarity relation model, 

uses surface derivatives, such as slope and curvature, as input to a multivariate fuzzy 

classification which yields the membership values [2, 3, 16, 19]. In the third approach, 

fuzzy classification of landforms is performed based on landforms extracted from 

multiscale DEMs. In Fisher et al. [14], a multiscale approach to the definition of the 

fuzzy set membership of morphometric classes of landscape is studied. Using the English 

Lake District region as a case study, fuzzy classification of the six basic morphometric 

features (peaks, pits, passes, channels, ridges, planes) are generated.  

 In this paper, the fuzzy classification of physiographic features extracted from 

multiscale DEMs is performed. Physiography (also known as land surface characteristics) 

is the study of the physical features and attributes of the earth's land surface. The  
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detection of the physiographic features of a terrain is the first phase involved in the 

classification of the various landforms of the terrain.  

In Section 2, the lifting scheme is used to generate multiscale DEMs. In Section 3, 

the three predominant physiographic features, mountains, basins and piedmont slopes, are 

extracted from the generated multiscale DEMs using the mathematical morphological 

based physiographic segmentation algorithm proposed in Dinesh et al. [10]. In Section 4, 

the fuzzy classification of the extracted physiographic features is performed based on by 

the average of Boolean memberships of the extracted physiographic features over the 

scales of measurement. Using the generated fuzzy memberships, the dominant 

physiographic features, and their variances, are computed. Concluding remarks regarding 

the scope of the study is provided in the final section. 

 

2 Generation of Multiscale DEMs using the Lifting Scheme 

 Feature detection and characterization often need to be performed at different of 

scales of measurement. Wood [34, 35] shows that analysis of a region at multiple scales 

allows for a greater amount of information to be extracted from the DEM about the 

spatial characteristics of a feature. The term scale refers to combination of both spatial 

extent and spatial detail or resolution [30].  In this paper, the variation in the spatial 

extent over which physiographic features are defined is used as the basis to perform fuzzy 

classification. 

 In this paper, multiscaling is performed using the lifting scheme [28, 29]. The 

lifting scheme is a flexible technique that has been used in several different settings, for 

easy construction and implementation of traditional wavelets and of second generation 

wavelets, such as spherical wavelets. Lifting consists of the following three basic 

operations (Figure 1): 

 

Step 1: Split 

 The original data set x[n] is divided into two disjoint subsets, even indexed points 

 xe[n]=x[2n], and odd indexed points x0[n]=x[2n+1]. 
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Step 2: Predict 

 The wavelet coefficients d[n] are generated as the error in predicting x0[n] from 

 xe[n] using the prediction operator P: 

 d[n]=x0[n ]- P(xe[n])                (1) 

 

Step 3: Update 

 Scaling coefficients c[n] that represent a coarse approximation to the signal x[n] 

 are obtained by combining xe[n] and d[n]. This is accomplished by applying an 

 update operator U to the wavelet coefficients and adding to xe[n]: 

 c[n]=xe[n] + U                  (2) 

 

 
Figure 1: Lifting stage: split, predict, update; ke and ko normalize the energy of the 

underlying scaling and wavelet functions. 
(Source: Claypoole and Baraniuk [6]) 

 

 These three steps form a lifting stage. Using a DEM as the input, an iteration of 

the lifting stage on the output c[n] creates the complete set of multiscale DEMs cj[n] and 

the elevation loss caused by the change of scale dj[n]. 

The DEM in Figure 2 shows the area of Great Basin, Nevada, USA. The area is 

bounded by latitude 38° 15’ to 42° N and longitude 118° 30’ to 115° 30’W. The DEM 

was rectified and resampled to 925m in both x and y directions. The DEM is a Global 

Digital Elevation Model (GTOPO30 DEM) and was downloaded from the USGS 

GTOPO30 website (http://edcwww.cr.usgs.gov/landdaac/gtopo30/gtopo30.html). 

GTOPO30 DEMs are available at a global scale, providing a digital representation of the  
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Earth’s surface at a 30 arc-seconds sampling interval. The land data used to derive 

GTOPO30 DEMs are obtained from digital terrain elevation data (DTED), the 1-degree 

DEM for USA and the digital chart of the world (DCW). The accuracy of GTOPO30 

DEMs varies by location according to the source data. The DTED and the 1-degree 

dataset have a vertical accuracy of + 30m while the absolute accuracy of the DCW vector 

dataset is +2000m horizontal error and +650 vertical error [22].  

 

 
Figure 2: The GTOPO30 DEM of Great Basin. The elevation values of the terrain 

(minimum 1005 meters and maximum 3651 meters) are rescaled to the interval of 0 to 
255 (the brightest pixel has the highest elevation).  The scale is approximately 

1:3,900,00. 

 

Multiscale DEMs of the Great Basin region are generated by implementing the 

lifting scheme on the DEM of Great Basin using scales of 1 to 20. As shown in Figure 3, 

as the scale increases, the merge of small regions into the surrounding grey level regions 

increases, causing removal of fine detail in the DEM. In Table 1, the generated multiscale 

DEMs are compared in terms of their: 
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1) Mean elevation: It is computed as the average elevation of the pixels that 

belong to an object’s region. It is interpreted as a measure of the volume of the 

object per unit area.  

2) Mean gradient: It is computed as the average value of gradient of pixels 

constituting an object’s region.  

3) Local relief: The local relief for a finite area of surface was defined as the 

difference between the maximum elevation and minimum elevation occurring 

within that area [20]. 

4) Relative Massiveness: Hypsometry studies the distributions of elevations 

across an area of land from one catchment to the entire planet [7]. The 

hypsometric integral (HI) is a process indicator reflecting the stage of 

landscape development [27] and measures the extent to which a land surface 

has been opened up by erosion [7]. More specifically, areas with HI above 0.6 

are in the “youthful” stage, areas with HI between 0.35 and 0.6 are in the 

“equilibrium or mature” stage and area with HI below 0.35 are in a transitory 

“monadnock” stage [27]. From a mathematical point of view, HI equals to the 

relative massiveness, {Mean elevation – minimum elevation} to {Local 

relief} [23]. The advantage of relative massiveness is that it is easier to 

compute. Low relative massiveness values occur in terrain characterised by 

isolated relief features standing above extensive level surfaces, while high 

values describe broad, somewhat level surfaces broken by occasional 

depressions [22]. 
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946                                                                                                                         S. Dinesh 
 

    
(e)                                                                  (f) 

Figure 3: Multiscale DEMs generated using scales of : (a) 1 (b) 3  (c) 5 
(d) 10 (e) 15  (f) 20. 

 
Table 1: Statistics of the generated multiscale DEMs. 

Scale Maximum
elevation 

(grey 
level) 

Mean 
gradient

(°) 

Local
relief 

Relative 
massiveness 

1 85.13 5.94 255 0.33 
2 84.87 5.55 240 0.35 
3 84.52 5.15 227 0.37 
4 84.06 4.77 202 0.41 
5 83.62 4.46 194 0.42 
6 83.18 4.20 183 0.44 
7 82.72 3.93 171 0.47 
8 82.14 3.66 163 0.49 
9 81.71 3.47 163 0.48 

10 81.06 3.20 149 0.52 
11 80.73 3.05 143 0.53 
12 80.37 2.89 135 0.54 
13 79.54 2.60 127 0.56 
14 79.08 2.44 125 0.54 
15 78.55 2.26 115 0.55 
16 78.09 2.10 109 0.55 
17 77.83 1.96 107 0.56 
18 77.69 1.86 106 0.56 
19 77.51 1.75 104 0.57 
20 77.39 1.67 99 0.59 
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3 Extraction of Physiographic Features from the Generated Multiscale DEMs 

 The mountains, basins and piedmont slopes of the generated multiscale DEMs are 

extracted using the mathematical morphological based physiographic segmentation 

algorithm proposed in Dinesh et. al [10]. Ultimate erosion is used to extract the peaks and 

pits of the DEM. Conditional dilation is performed on the peaks and pits of the DEM to 

obtain the mountain and basin pixels respectively. The pixels that are not classified as 

mountain pixels or basin pixels are assigned as piedmont slope pixels.  

 A major problem faced in DEM analysis is the presence of spurious peaks and 

pits, which are by input data error, interpolation procedures and the limited horizontal and 

vertical resolution of DEMs. Spurious peaks and pits do not correspond to real landscape 

features and they cause errors in features extracted from DEMs. Hence, a number of 

approaches have been employed to perform the removal of spurious peaks and pits from 

DEMs, including mean smoothing [21], Gaussian blurring [18, 26], Kalman filtering 

[33], the the á Trous algorithm [17] and morphological smoothing by reconstruction [9]. 

However, when dealing with multiscale DEMs, spurious peaks and pits are to be treated 

as artifacts of the DEM, rather than errors. Hence, the removal of problem areas caused 

by spurious peaks and pits is not performed.  

 As shown in Figures 4 to 6 and Tables 2 to 4, the merging of small regions into 

the surrounding grey level regions and removal of fine detail in the DEM cause a 

reduction in the area of the extracted mountains, and an increase in the area of the 

extracted basins. In general, the area of the piedmont slopes remains relatively constant.  
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(e) (f) 

Figure 4: Mountains (the pixels in white) extracted from the corresponding multiscale 
DEMs in Figure 2. 

 
Table 2: Statistics of the mountains extracted from the generated multiscale DEMs. 
Scale Area 

(pixels) 
Maximum 

elevation 

(grey level) 

Mean 

gradient

(°) 

Local

relief 

Relative 

Massiveness 

1 44511 103.07 10.15 251 0.39 
2 41815 103.43 9.73 236 0.42 
3 40467 103.05 9.05 224 0.44 
4 37889 103.01 8.41 200 0.50 
5 34938 102.60 8.10 192 0.51 
6 32103 101.10 7.88 181 0.54 
7 28791 99.86 7.88 169 0.57 
8 26171 96.96 7.80 162 0.57 
9 21635 94.75 7.87 162 0.56 

10 16270 95.58 8.16 149 0.61 
11 15262 94.47 8.17 143 0.63 
12 13937 93.39 8.09 135 0.64 
13 11269 88.91 7.92 127 0.63 
14 9028 89.54 7.88 125 0.63 
15 7682 88.22 7.86 115 0.64 
16 6988 88.19 7.84 108 0.64 
17 6466 88.06 7.77 101 0.63 
18 5659 89.84 7.77 95 0.64 
19 4531 91.70 7.69 88 0.66 
20 4325 90.93 7.58 84 0.68 
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(a) (b) 

 
 
 
 
 

    
 

(c)                                                           (d) 
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(e) (f) 

Figure 5: Basins (the pixels in white) extracted from the corresponding multiscale DEMs 
in Figure 2. 

 
Table 3: Statistics of the basins extracted from the generated multiscale DEMs. 

Scale Area 
(pixels) 

Maximum 

elevation 

(grey level) 

Mean 

gradient

(°) 

Local 

relief 

Relative 

massiveness 

1 36375 66.18 1.31 131 0.51 
2 37255 66.90 1.39 131 0.51 
3 38029 67.33 1.41 130 0.51 
4 38804 67.90 1.42 129 0.51 
5 39841 68.73 1.44 129 0.52 
6 41222 69.76 1.43 139 0.49 
7 43324 71.53 1.44 164 0.42 
8 45776 73.52 1.44 137 0.51 
9 48729 74.75 1.42 137 0.52 

10 51861 76.07 1.43 145 0.50 
11 55453 77.02 1.36 143 0.50 
12 55387 75.49 1.35 135 0.51 
13 58790 77.16 1.33 127 0.54 
14 65674 78.85 1.30 125 0.54 
15 70356 76.37 1.36 110 0.56 
16 73360 76.77 1.26 109 0.54 
17 69079 80.20 1.15 101 0.56 
18 70584 80.16 1.12 96 0.54 
19 72870 79.80 1.08 94 0.55 
20 73704 79.69 1.05 90 0.57 
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(a)                                                                       (b) 

 
 
 
 
 

    
(c)                                                                           (d) 
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(e)                                                                           (f) 

Figure 6: Piedmont (the pixels in white) extracted from the corresponding multiscale 
DEMs in Figure 2. 

 
 

Table 4: Statistics of the piedmont slopes extracted from the generated multiscale DEMs. 
Scale Area 

(pixels) 
Maximum 

elevation 

(grey level) 

Mean 

gradient 

(°) 

Local 

relief 

Relative 

massiveness 

1 10530 74.74 4.12 135 0.54 
2 12346 76.24 3.96 140 0.53 
3 12920 77.05 3.97 140 0.54 
4 14723 77.90 4.25 140 0.54 
5 16637 79.44 4.05 149 0.52 
6 18091 81.98 3.97 142 0.56 
7 19301 82.28 3.65 164 0.49 
8 19469 82.50 3.34 154 0.52 
9 21052 84.41 3.69 157 0.52 

10 23285 82.03 3.66 149 0.52 
11 20701 80.55 3.80 143 0.53 
12 22092 84.38 3.47 135 0.57 
13 21357 81.15 3.30 127 0.57 
14 16714 74.31 3.98 125 0.51 
15 13378 84.50 3.78 115 0.60 
16 11068 80.41 4.07 108 0.57 
17 15871 63.31 3.09 107 0.42 
18 15173 61.68 3.11 106 0.41 
19 14015 61.03 3.34 104 0.41 
20 13387 60.33 3.20 99 0.42 
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4 Fuzzy Classification of the Extracted Physiographic Features 

 

 In order to perform the fuzzy classification of the extracted physiographic 

features, it is first assumed that at any particular scale, each physiographic feature is a 

Boolean object. Hence, the landform L, at location x, can be belong the set [P] of three 

possible physiographic features: 

Lx = [P]                 (3) 

 

Of the 3 valuations of P, only one value will have a Boolean membership of 1, 

while the remaining two will have Boolean memberships of 0. The main reason why 

physiographic features are more suitable to be considered as fuzzy objects is that the 

assignment of any location to a physiographic feature is not necessary stable under 

repeated observation at different scales. Thus, if mPX|S1 = 1 for a particular landscape, it 

does not follow that either mPX|S2 =1, or mPX|S3 =1, where mPX indicates the membership 

value at location x and s1, s2 and s3 indicate different scales of measurement. 

The fuzzy membership of a physiographic feature µP at location x can be given by 

the average of Boolean memberships of that feature over the scales of measurement: 

                  (4) 

 

 Figure 7 shows the fuzzy memberships of the extracted physiographic features.  

The distribution of the pixels based on their memberships is shown in Table 5. 
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(a)                                                                      (b) 

 
 

 

 
(c) 

Figure 7: Fuzzy memberships of the three physiographic features: (a) mountains  (b) 
basins  (c) piedmont slopes. The membership values (ranging from 0 to 1) are rescaled to 

the interval of 0 to 255 (the brightest pixel has the highest membership value). 
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Table 5: Distribution of the pixels based on their fuzzy memberships.  
Membership 

range 
Mountains 

(pixels) 
Basins 
(pixels) 

Piedmont  
Slopes 
(pixels) 

0.0-0.1 49601 12212 51744 
0.1-0.2 3926 4642 8691 
0.2-0.3 9098 10192 11559 
0.3-0.4 2620 5877 2188 
0.4-0.5 9872 5841 3709 
0.5-0.6 2356 4579 2396 
0.6-0.7 4949 4992 3242 
0.7-0.8 2006 3596 2659 
0.8-0.9 1331 5006 1246 
0.9-1.0 1334 2346 1464 

 

 Using the generated fuzzy memberships, the dominant physiographic feature mod 

Px at location x is defined as: 

                       (5) 

The computed dominant physiographic features are shown in Figure 8. A total of 

23,698 pixels (25.92%) are classified as mountains pixels, 53,698 (58.74%) as basin 

pixels and 14,020 pixels (15.34%) as piedmont slope pixels.  

 

 
 

Figure 8: The dominant physiographic features. The mountains pixels are the pixels in white, the 
piedmont pixels are the pixels in grey and the basin pixels are the pixels in black.    
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The variance of the computed dominant physiographic features is measured by 

the entropy Ex, which is scaled between 0 (classification agreement at all scales) and 1 

(observations split equally between all three features), by dividing the maximum entropy 

generated by the three physiographic features: 

               (6) 

 The computed entropy values are shown in Figure 9. The distribution of the pixels 

based on their entropy values is shown in Table 6. 

 

 
Figure 9: The computed entropy values. The entropy values (ranging from 0 to 1) are 
rescaled to the interval of 0 to 255 (the brightest pixel has the highest entropy value). 

 
Table 6: Distribution of the pixels based on their entropies.  

Entropy range Number of pixels 
0.0-0.1 49601
0.1-0.2 3926
0.2-0.3 9098
0.3-0.4 2620
0.4-0.5 9872
0.5-0.6 2356
0.6-0.7 4949
0.7-0.8 2006
0.8-0.9 1331
0.9-1.0 1334
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4 Conclusion 

 

 The fuzzy classification of physiographic features extracted from DEMs was also 

performed. First, the lifting scheme algorithm was used to generate multiscale DEMs. 

The three predominant physiographic features, mountains, basins and piedmont slopes, 

were extracted from the generated multiscale DEMs. Fuzzy classification is performed 

based on the physiographic features extracted from the multiscale DEMs. Using the 

generated fuzzy memberships, the dominant physiographic features, and their variance, 

are computed. The proposed fuzzy classification method is useful for statistical analyses 

and determination of sample schemes. 
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