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Abstract

This paper proposes a posteriori error estimators of gradient recovery type
for the Ciarlet-Raviart formulation of the second biharmonic equations. By the
appropriate modification of weighted Cle'ment -type interpolation, we give the
proper scaling of the gradient recovery leading to both lower and upper estimation
on the non-uniform meshes. Moreover, it is proved that a posteriori error
estimators is also asymptotically exact on the uniform meshes if the solution is
smooth enough.
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1 Introduction

Adaptive finite element appromixation via a posteriori error estimators is not
only among most important means of boosting the accuracy and efficiency of
finite element discretization but also widely used in engineering numerical
simulation. The literature in this area is huge. Most of the known a posteriori error
estimators are either of residual type or only for the second order elliptic problems,
see, for example, [1-5], however, there is not a paper both for the fourth order
problem and by gradient recovery type of a posteriori error estimators.

In this paper, we discuss a posteriori error estimators of gradient recovery
type for the second biharmonic problem. Using the Ciarlet-Raviart mixed FEM,
we can obtain and prove both lower and upper bounds for the discretization error
on the non-uniform meshes. Moreover, it is proved that a posteriori error
estimators is also asymptotically exact on the uniform meshes if the solution is
smooth enough.

2 Preliminaries and the main results

In this paper, let Q< R? be an open bounded domain with a Lipschitz

boundary 0, we adopt the standard notation W™ (Q2) for Sobolev spaces on

Q with the norm |e

ey (OF ||.||m,q,Q as a simplification) and semi-norm

(or |o|qu). We set W"(Q) ={oeW™(Q):w|  =0}. We denote

w ™9 (Q)

W™ (Q) by H™(Q) with the norm |l¢|  and semi-norm |s| . We denote

the measure of the domain D by |D| In addition, C denotes a general

positive constant independent of the mesh size h, which may take different
values in different occurrences.

2.1 Review of the Ciarlet-Raviart mixed element scheme for the second
biharmonic equation.
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Consider the second biharmonic problem (the model for the deformation of
simply supported thin elastic plates )

Ag=F, inQ,
¢p=Agp=0, on I'=0Q,

(2.1

where the domain Q is a convex polygonin R?.

It was proved that for any f eL*(Q) the weak solution of the second
biharmonic problem on a rectangle satisfies ¢ < H*(Q) (see [2]).

With u=-A¢, the second biharmonic equation can be decomposed into two

poisson equations with Dirichlet boundary conditions.
—Au="f, in Q,
U+Ag=0,in Q, (2.2)
¢p=A¢=0, 0on I'=0Q,

From the analysis as the above, we can see that the second biharmonic
equation have not only the better regularity of the solution but also the simpler
structual characteristic. That makes its studying much easier.

Let (u,v) :I uv,and a(u,v) :jQVqu , the following variational problem

corresponding to  (2.1):
Find (u, ¢) e H{Q)xH{Q),such that

{(u,v)—a(v,¢)=0,VV€H3(Q)? (23)

au,p)+(f,p)=0,VpeH;(Q).
Let T" :{K} be a quasi-uniform triangular or rectangluar partition of
QcR? with h=max,_, h, the maximum diameter of the partition. Set

X ={\/ec°(ﬁ):v|K eP VK eT“}, (m=>1), and M"=X"=X AH}(Q).
Condsider the discerete variational problem used to approximate (2.3):

Fnd (u,¢)eX"xM" such that
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{(uh,v)—a(wh) =0,YWve X", (2.4)

a(uh,go)+(f,go):O,Vgoth.

2.2 Weighted Cle'ment —type interpolation

A posteriori error estimators are based on the so-called weighted Cle’ment
type interpolation on the finite space M " (or X"), First of all, we need introduce
this interpolation.

Let 6°T"be the set of nodes, o, be the basic function of M"(or X") on
2e0’T", w,=suppo,(X), where A=0°T"\oQ.

The weighted Cle'ment —type interpolation is defined by:

W= Y V,0,,VWeH;(Q), and VZZL,?,VZEA.

2e(8*T") c,,1)

2.3 Gradient recovery on non-uniform meshes

In order to construct a posteriori error estimate on irregular meshes, we need

a gradient recovery operator Gv,on M"(or X") which stafies

J, )
GV, = > Gv,(D)4,» GV, (2)=D a)(VV,),;, 7V, e M"(X").;
7e0Th j=1 z
- 3 _
where leleJ2602,206’=1,0S0(Z’S1,j=1,"',32-

z
=

Using the gradient recovery operator, we can then construct a posteriori
estimators as follows:

n* =2 (|Gu, _Vuh”z,K +|Gg, -V, ||(2),K) -
K

2.4 The main results
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For the above a posteriori error estimators of gradient recovery type, we can
derive both efficiency (upper bound) and reliability (lower bound) of a posteriori
error estimators on general meshes for the second biharmonic equation, that is as
follow:

Theorem 2.1 Suppose (u,¢)and (u,,4,) are solutions (2.3) and (2.4),
respectively. Then:
cn’ -Cye; <|u-uf;, +|#-4,, <Cr’+Cel,
where
N = ;(”GUh —Whlli,K +|Gé, - V4, ||(2),K) ’

g =Y N[ I(F =) +(u,—(4,),) +(Au, - (Au,), ) + (Ad, — (Ad,),)]

& = Yo [ I(F = )P+ (U, —u,)1,

_ LV J.Kv

With V=, v, = » h, =max

IR CR

3

.

3 Proof of the theorm

Lemma 3.1 Assume that is the weighted Cle’ment —type interpolation of

defined as the above. then, for all, there holds
2
> =), < clvl;, . YV e Hy(Q)
KeTh '

2
1,0’

|7rv|12’Q <c|v[,,, Yve Hy(Q)

Furthermore, if f e L*(Q),Vve Hi(Q), then

Jl f=my <, (] e *ye

f-f,
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o
=L1’

The proof of this lemma can be found in [5].

Where

h, =max,_, h..

Kew,

Lemma 3.2 Suppose (u,¢)and (u,,d,) are solutions of (2.3) and (2.4),
respectively, Then:
o} —Coe; <|u-uf;, +|#-4,;, <Cnl+Cel, (3.1
Where | is the edge of the element, h, is the size of I,[v] denote the jump of

v on the edge, and

=Y h jﬁ“] Y h jP%

1NeQ= 1NoQ=

F= D[ ICF =)+ (U, = (), ) + (AU, — (Au,), ) + (Ad, - (Ad,), )1,
zeA @2
=;mhw—ﬂ%wvmﬂ,
AR L,
L
Proof (1) Proof of the right inequation.
Let e, =u-u,, e,=¢—4¢, . Itfollowsform (2.3) and (2.4) that

with h, =max,_, h,,h=max__, h,.

Kcao, KeTh

|u_uh|ig+|¢_¢h|12,g
=a(u-u,u-u)+alg—-¢,.¢-4)
=a(u-u,.e,)+a(e,, s—d¢)

=a(u-uy,,e,—ze,)+a(e,—7e,,¢—¢,)
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= (-f,e,—7€,)+(Au, € -78)— L[au“](eu—ﬂeu)

1NoQ=0

+(u,e, —7¢,) + (Ad, €, — 7€,) L[%](e ) (3.2)

IﬂaQ
Where 7e, € X"and 7e, € M"are the weighted Cle’ment —type interpolations

of e, and e, defined as the above.

2
By lemma3.1 and the Young inequation |ab| < Aa? +b7,v/1 >0 ,then

|(Au, e, — 7€ )|<C;hj (Au, —(Au,),)? += | g YU EHI(Q) (3.3)
(g, ~me)|<CI [ (A0 —TAR)Y +2le L, Ve HIQ). (3.4)
|(—f,eu—7reu)|sC§hsz(f—f_z)2+1 e, YueHN(Q), (3.5)
(e, -z <CIR, (-u) gl Vo < HiE). (36)

Note that the functions of u and E is not computable in (3.6) , it can not

be the right terms of the a posteriori error estimators.
It is well known that

la—d|<|a-b|+|b—c|+|c—d| Vab,c,deR,
and (|a+|b|+|c)? <3(a® +b*+c?),Va,b,ceR.
it can be proved that

)2

— 2 R
s(|u—uh|+‘uh—(u )

+‘(uh)z —u,

)

<3(lu-u,| +‘uh

+‘(uh)z —Uu,
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[ @), -u]) (3.7)

o SSZLZ h2(u-u,| +‘uh —(u,),

J,
wZ

Note that u, and (u,), = , it follows from swchwarz inequality
ol 2
that
(L, ju—u,)? ,[ ju—u,[
u, —(u,), <————< ,
\ o \ ] ]
2| 2 -[ B |2 2 2 2 2
Hence J' h: J' hf = =hi[ Ju-u,| = [, nfu-u,[

ZA:L) h2(u —u,[ +‘(uh)Z o
Using ;F\e priori error estimate of the second elliptic problem, then,
Ju=ulq <Ch*u—uy s, (3.9)
From (3.6) — (3.9), then,

_hu —uh|2 <2n?fu-ufi, . (38)
<), ,

‘(u,e¢—7re¢)‘£CZhj (U, —(Uy),)° +Che [, += \e\

<thj (U, —(U,),)? +—|e ot \e¢\ VoeHLQ) (3.10)

zeA

j,[—](e -78,)|<C Y (th[ e, — e,

1NeQ= 1NoQ=0

0
<C > (h J‘I[ Uh] )2 ey -7, +les el )

1N6Q=0

S (h jl[a““] Yk

Iﬂ@Q

h[ [%] —|eu o (3.1D)

Iﬂ@Q
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Where K, is an element such that | K, . Similarly,

Oy 1
L[—](e ~7e,)|<C 3 @hL[ Pkl o 12

1NeQ= N

Therefore, it follows from (3.2) — (3.5) and (3.10)—(3.12) that:

|u _uh|12,9 +|¢_¢h |1ZQ < C77j2 +Cyep
(2) Proof of the left inequation.
Using the Bubble function technique (see,e.g.,[1]), it can be proved that

> nfISer|<Clu-uf, e[ auf (3.13)
1N6Q=2 K
a¢h 2 2 2

W[ T\ <Clo =l + O Ju+ad, (3.14)
|ﬂaQ K
S| +auf <Clu-ulf,+CInE| (f-)°, (3.15)
K K
Y[ Juragl <cClg-g|,+COhe] @-u?, (3.16)
K K

Note that the functions of u and u is not computable in (3.16) , it can not

be the right term of the a posteriori error estimators, thus,
Similarly,

—2 J— - _
‘u—u‘ s(|u—uh|+‘uh—uh‘+‘uh—u‘)2
5 —_2 | — =2
<3(u—uy| +‘uh—uh‘ +‘uh—u‘),

So S [ onzfu-ul <33 hzqu-uf +ju,-u +fu-u). @D
K K

u
Note that u = |K | and u I|Kh , it follows from schwarz inequality that

)| _(lu-u)?flu-uf
K| K K]

u-u,| =
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2

)

2
J \G—I\zsthé“TT”“'=héIK|u—uh|2= [T

;L h (u—u,[” +[u, - ) < z;jK hZ Ju—u, [ <2n?Ju-u,[} - (3.18)
Using the priori error estimators of the second elliptic problem, then,
||u—uh||(2)‘Q SCh2|u—uh|12‘Q : (3.19)

From (3.16) —(3.19), then,

;h;jK|u+A¢h|2 <Clg-4,[, +C;h,§jl< (U, —u,)? . (3.20)

From (3.13) — (3.15) and (3.20) , thus,

7 < CQu=b |y +o -0+ Cots

From the step (1) and (2), the proof of lemma 3.2 is completed.

Lemma 3.3 Under the conditions and the definitions of the lemma 3.2, then

cn; <n<Cn; .

The proof is similarly of the lemma 4.3 in [4]
The proof of the theorem 2.1 is the direct result of Lemma 3.2 and 3.3,

4 Discussions

In the proof of theorem in this paper, the end of the definition of X" =M "is
only to be easier for the proof. In fact, the same result can be obtained under the
condition of X"=M" . In general, X" and M" are taken as the quadratic
piecewise polynomial spaces. Similar as [4], using the result in this paper, we can
prove that the a posteriori error estimators are asymptotically exact which the
mesh is uniform and the solution is smooth enough. That is to say :

n’ :|u—uh|121Q +|¢—¢h|12,9 +o(h?).
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