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Abstract

A classical duality formula in general Banach spaces, usually es-
tablished for a convex proper lower semicontinuous perturbation under
one of the familiar Rockafellar, Robinson, Attouch-Brézis conditions, is
shown to hold in more general setting. We provide an application to
accredit this extension.
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1 Introduction.

Let X be a normed vector space and let f,g: X — RU{+o0} be two con-
vex functions. Finding sufficient conditions ensuring the following fundamental
duality result

inf {f(z) +g(x)} + min {f*(=y") +4"(y")} =0 (1.1)
reX y*rey*

is of crucial importance in convex analysis. Our main objective is to attempt

to prove that the statement (1.1) holds for a broad class of convex functions

whose epigraphs are semi-closed under some constraint qualification in the

setting of Fréchet spaces. This class has been studied by Laghdir in his recent
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paper [10] from the point of view of subdifferentiability. Let us point out
that this large class of convex functions includes convex lower semicontinuous
functions, cs-convex functions and cs-closed functions. We give an application
dealing with the convex composite optimization.

2 Preliminaries and Notations.
In what follows, for a given function f: X — R U {400} we denote by
dom f: = {xeX: f(x) <+oo}
its effective domain, by
Bpi f: = {(&,7) € XxR: f(z) <7)
its epigraph and by
[f<r]: = {zeX: flz) <r}

its sublevel set at height r. We say that f is proper whenever dom f # ().
Throughout this paper, we denote commonly by (, ) the duality pairing between
X and X* and between X™* and X**. The subdifferentiale of f at a point x € X
is by definition

of(z): = {a*e X" : f(x) > f(z)+ (", 2 —T), Vo € X}.
The Legendre-Fenchel conjugate function of f is defined for any x* € X* by

[ (z") ;== sup{(z*, z) — f(x)}.

rzeX

Let C be a subset of X. The cone that it generates is

R,C: = | JAC,

A>0
its indicator function is

0 if zeC
(50(1‘) =
+o00 otherwise.

The normal cone of C at z is defined by

Neo(z) := 06c(z) ={a" € X*: (2", 2 —7) <0, Vo € C}.
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Let C' be a subset of X. Following [8] we say that C' is cs-closed if
whenever (x,)nen is a sequence in C' and (a,)nen is a sequence in RY with
Yo gom =1land x = > a,z, exists in X, then z € C. It is easy to see
that every cs-closed subset is convex. C' is said to be semi-closed if C' and its
closure C' have the same interior. Also, if X is a locally convex space, then C
is said to be lower cs-closed if there exists a Fréchet space Y and a cs-closed
subset A of X x Y such that C' = Ax where Ax denotes the projection of A
on the space X. There are plenty of sets that are cs-closed, lower cs-closed
or semi-closed (see [2], [3], [6], [7], [8], [13]). The subdifferential calculus and
duality theory associated with the class of cs-closed functions have been studied
by Laghdir [9] and Zalinescu [14].

Now, following [13], [14] and [10] we set

Definition 2.1 Let f: X — RU {+o00}.
1. We say that [ is semi-closed if it is proper and its epigraph is semi-closed.
2. We say that f is cs-closed (resp. lower cs-closed) if it is proper and its
epigraph is cs-closed (resp. lower cs-closed).
3. We say that f is cs-convex if f is proper and

) < hmmfZ)\ f(zn)

m—-+00

whenever, VYn € N, \, >0, z, € X, Z)‘” =1 and Z)\nxn 18 convergent to

z m X.

Remark 2.1 1) Let us note that if f : X — RU{+o0} is proper, convex and
lower semicontinuous then it is cs-convex.

2) If f is cs-convex then it is cs-closed. Conversely, Zalinescu in [14] proved
that when f* is proper and f is cs-closed then f is cs-convex.

3) Every cs-closed function is semi-closed.

4) The indicator function ¢ of every convex semi-closed subset of X is semi-
closed.

5) In [10], Laghdir studied the subdifferentiability of a convex semi-closed
function, i.e. df(Z) # () whenever T € dom f, Ry[dom f—7Z] = X and X is a
Féchet space. It was proved in [10], that this result falses under the weakened
condition: Ry [dom f — Z] is a closed vector subspace.

6) In [10], it was established a characterization for a semi-closed function by
means of its level sets given by: f: X — RU {+o0} is semi-closed if and only
if its level sets are semi-closed.
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3 The fundamental duality formula.

Our goal in this section is to setting up the well-known fundamental duality
result (1.1) for the class of convex semi-closed functions. This can be obtained
provided a certain constraint qualification. In order to derive this result we
will use the approach based on the use of a perturbation function. For this let
us consider the following condition

(X is a Fréchet space
f:X — RU{+400} convex and proper
(C.Q1) g: X — RU{+o0} convex, proper and semi-closed

there exists Z € dom fNdom g such that

| Rif[dom g — 2] = X.
and the marginal function

p: X — RU{+o0}
y = ply) = nf{f(z) +g(y +2)}

Obviously p is convex since it is a marginal function of a convex function.

Lemma 3.1 If in)f({f(x) + g(z)} € R and the condition (C.Q1) is satisfied,
e
then dp(0) # (.

Proof. Let us note that the equality

+[dom g = Umg<n

is obtained simply by observing that

dom g = Jlg < ).

n>1

Following [10], it follows from Baire’s Theorem and the fact that g is semi-
closed, that there exists some neighbourhood of zero U and some integer n > 1
such that

gly+z)<n, VyeU

which yields
p(y) < f(@)+9(y+7) < f(Z)+n, VyeU.
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Therefore, it follows that p is bounded above on a neighbourhood of zero
and since p(0) = in)f( {f(z) + g(x)} is finite and p is convex we obtain from a
xre

classical convex analysis result (see [5]) that p is subdifferentiable at zero i.e.

Ip(0) # 0. O

Now, we are ready to state our main result.

Theorem 3.2 If 12)f({f(x) +g(z)} € R and the condition (C.Q1) is satis-
fied, then
inf {f(z) +g(x)} + min {f*(=2") +g"(2")} = 0.

Proof. It is straightforward to see that for any z* € X*
p(a") = fH(=27) + g"(a7),
so from the Fenchel’s inequality we have
p (") +p(0) > 0, Va* € X~

B (/@) + 9(a)} + (=) + g6 20, Vet e X7, (3

which yields
il (o) + " @) + il (f(2) + g(a)) 2 0.
Since dp(0) # 0, taking z* € 9p(0) i.e.
p*(z") +p(0) =0, (3.2)
it results by combining (3.1) and (3.2) that
inf {f(z) +g(x)} + min {f*(=27) +g"(27)} = 0.

O

Corollary 3.3 Let x* € X* such that 12)f({f(x) +g(x) — (z",2)} € R and
assume that (C.Q1) holds, then we have

(f +9)7(@") = min {f*(z" =) +g7(y")}-
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Proof. It suffices to apply Theorem 3.1 to the functions

F: X — RU{+4+o00}
v — F(z) = f(z) — (2", 2)

G: X — RU{+o0}
v Glr) = g(n)

by observing that F' and G verify together the condition (C.Q1). O
Corollary 3.4 Under the condition (C.Q1) we have
O(f +9)(z) = 0f(2) + 99(%).

Proof. The inclusion 0f(Z) 4+ 0g(Z) C I(f + g)(Z) is immediate.
Conversely, let x* € d(f + g)(z), i.e.

(f +9)(x) = (=%, 2) = () +9(7) = (2", 7), VeeX,

and since Z € dom f Ndom g, it follows that 12)f({f(x) +g(z) — (2%, 2)} € R.
As

(f +9)@) + (f +9)" (") — (2", 7) = 0,

and using Corollary 3.1, we obtain for some z* € X* that
g (") + [1(@" = 2") + f(7) + 9(z) — (27, T) = 0,
by setting y* := x* — 2*, we have
lg"(z") + g() = (7 D) + [[*(y") + f(2) — (", 2)] = 0,

which yields, thanks to Fenchel’s inequality, that

9 (") +9(z) — (z,7) = 0

)+ (@) =y, 7) = 0
ie.

z* € 0g(z)

y* € 0f(x)
and therefore we get O(f + g)(Z) C 0f(Z) + 0g(T). O
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Corollary 3.5 Let C' and D be two convex sets of X and x € C' N D.
Suppose that C is semi-closed and R (C — ) = X, then

Nenp(Z) = Ne(Z) + Np().

Proof. It sufficies to apply Corollary 3.2 to the indicator functions ¢ and
op. a

Corollary 3.6 Let C' be a semi-closed convex cone with 0 € C and let
z € X such that R.(C —z)=X. If in(fjf(x) € R then one has
[AS

inf f(x) + min f*(—2*) = 0.

zeC z*eC0

Proof. Applying Theorem 3.1 to f and d¢c we obtain

inf f(z) + min {f*(~2") +sup(a”, 2)} = 0.

zeC

Since C' is a cone it is easy to check that

C% = {z* € X*: sup(z*,z) <0},
zeC

hence

: f : * _ * * — .
inf f(z) + min {f*(-z )+ilelg<x )} =0

We have 0 € C, so for every z* € C° we get sup(x*, z) = 0, therefore
zeC
inf in f*(~a") = 0.
O i =)
O

Corollary 3.7 Let C' be a semi-closed convex cone with 0 € C and let
z € X such that R, (C — &) = X, then one has

o . -
dist(z,C) = ac*ECI'?,ﬁ;(*H§1<x ,T).

Proof. Since in(fij — Z|| € R then applying Corollary 3.4 to f := |. — Z||
s
we obtain
inf ||z — 2| = max — f*(—z").
jetlhe =l =g = 7=

After computing the conjugate function of f we get that for any x* € X* we
have

fr(@") = dpy. (27) + (27, 7),
where By~ is the closed unit ball of X*. Hence we obtain

dist(z,C) = x*€£ﬁ§||§1<x*’ z).
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Remark 3.1 One may ask a natural question if the fundamental duality for-
mula (1.1) holds under the weakened condition: R4 [dom g] is a closed vector
subspace? The answer is no. Just take X an infinite dimensional Banach
space, f: X — R U {+o0} a convex proper function, g : X — RU {+o0} a
noncontinuous linear functional, Y := X x R, F' : Y — R U {+oc} defined by
F(z,t) = dp00p(2,t) and G : Y — R U {+oo} defined by G(z,t) = +oo if
t # 0 and G(z,0) = g(x). It is easy to see that ' and G are convex, proper,
G is semi-closed, Ry [dom G] = X x {0} is a closed linear subspace and G is
nowhere subdifferentiable. So

inf {F(x,t)+G(z,t)} =0

(z,t)eY

: f F* _ * _t* G* * t* — .
Ll P ) £ 6 ) = o0

Hence the fundamental duality formula (1.1) falses.

4 Application to convex composite optimiza-
tion.

In this section, we assume that the space Y is equipped with a partial
preorder induced by a convex cone Y, i.e. for any y1, yo € YV

<y Y & Y-y €Yy

and an abstract maximal element 400 will be adjoined to Y. A mapping
h: X — Y U{+o0o} is said to be Y,-convex in the sense that for any xo, =1 €
dom h:={z € X : h(x) € Y} and for any A € [0, 1] we have

h(hao + (1 — Nay) <y Mi(zo) + (1 — Mh(y).

A function g : Y — RU {+o0} is said to be Y;-nondecreasing on a subset C'
of Y if for any y;, y2 € C' we have

1 <y y2 = g(n) < g(y2).

In what follows, we extend to Y U {+oc} the composite function (g o h) by
setting (g o h)(x) = sup g(y) for any = ¢ dom h. Here Y denotes the positive
ey

Yy
polar cone defined by

Yi={y"eY": (y,y) >0, VyeY,}
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Many of the convex minimization problems arising in Applied Mathe-
matics, Operations research and Mathematical problems can be formulated as
the following convex composite problem

(P): inf(f +goh)),

where f : X — R U {400} is convex and proper, g : ¥ — R U {+o0} is
convex proper and nondecreasing on an appropriate subset of Y and h: X —
Y U {400} is Y;-convex and proper.

The aim of this section is to formulate the dual problem (P*) as-
sociated to the primal problem (P). For this, let us consider the following
constraint qualification

(X and Y are Fréchet spaces

f: X — RU{+o0} convex and proper

g:Y — RU{+00} convex, proper and semi-closed
(C.Q2)

h:X — Y U{+oco} Yi-convex and proper

there exists Z € dom hNdom fNAh~!(dom g) such that

| Ry[dom g — h(Z)] =Y.
and the following auxiliary functions
f: XxY — RU{+oo}
(‘I'ay) — f(x,y) = f(x)+5Epih(xay)
g: XxY — RU{+o0}
(,y) — gz, y) = 9(y),

where Epi h := {(7,y) € X xY : h(z) <y y} is the epigraph of h. Obviously
f and g are both convex and proper.

Proposition 4.1 If in)f((f +goh)(x) € R, g nondecreasing on Im h+Y, and
xre
the condition (C.Q3) is satisfied one has

inf (f +g0h)(z) = max{—(f+y" o h)"(0) —g"(y")}
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Proof. Let us note that for any x € X
(f +goh)(@) = nf {f(z,9) + 5(z,9)}

and dom f = (dom f x Y)NEpih, dom g =X x dom g and for any A € R
we have [§ < A\] = X x [¢g < A\] and hence it is easy to check that the condition
(C.Q2) ensures that f and § satisfy together the qualification condition (C.Q1).
Therefore by virtue of Theorem 3.1 we get

i (f+goh)(x) = nf{f(z,y)+5(r.y)}

yey

- queax)g {_f*(_x*a _y*> - g*(l'*, y*>}7
y*ey™

by expliciting the conjugate functions f* and g* we have
fr=a—y) = (f+y oh)(=a") +dy:(y")
g (@, y") = 9"(y") + 0g03(27)

and thus we get

inf (f+goh)(z) = y@eg{—(f +y o) (0)—g"(y")}

+

this completes the proof. O

Corollary 4.1 Let A: X — Y be a continuous linear operator. If in)f((f +
xre
go A)(z) € R and the condition (C.Q3) is satisfied one has

inf (f + g0 A)(z) = max {—f"(-AY") —g"(y")},
where A* : Y* — X* stand for the adjoint operator of A.

Proof. By putting Y, = {0}, it is obvious that g is nondecreasing on the
whole space Y and Y = Y*. Therefore, by applying Proposition 4.1, with
h := A, we obtain

inf (f +g0 A) (@) = max{—(f+y o A)(0) —g"(v")}-

rzeX

Since

(f +y 0 A)(0) = sup{—f(x) = (y oA ,)}

rzeX

= sup{—f(z) — (A*y*,z)}

rzeX
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hence we get

inf (f +g0A)(w) = max {~f"(-A"") — g"(y")}-
O

Corollary 4.2 Let x* € X* such that in)f({f(ac) +(goh)(z)—(z*,2)} € R,
[AS
g nondecreasing on Im h + Y, and the condition (C.Q2) is satisfied then

(f +goh) (") = min {g"(y") + (f +y" o h)"(z")}.

yevr
Proof. Let us consider the following function

F: X — RU{4+o0}
r — F(z) = fz) — (2", 2),

by observing that F' and g verify together the condition (C.Q)2) and hence by
applying Proposition 4.1 we obtain

(f+goh)(z") = — nf{F(x)+(g0h)(x)}

rzeX

= min {¢"(-y") + (F -y oh)(0)},

s
and since (F'—y* o h)*(0) = (f — y* o h)*(z*), we get the desired result. O

The next corollary concerns the calculus of the subdifferential of com-
posite convex functions using the preceding results.

Corollary 4.3 Under the condition (C.Q2) and g supposed to be nonde-
creasing on Im h + Y, one has

of+goh)@= | O(f+y oh)(@)

y*€dg(h(z))NY
Proof. Let z* € O(f + g o h)(Z) i.e.
(f +goh)(z) = (z%,2) = f(z) + (g0 h)(T) — (2", T), V&eX,
and since 7 € dom h Ndom f N h~'(dom g), it follows that

inf {f(x) + (g 0 h)(x) = (z",2)} € R.

rzeX

(f +goh)(z)+ (f +goh)(z") - («",7) =0,
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and using Corollary 4.2, we obtain for some z* € Y7 that
g (z") + (f + 2" o h)"(z") + f(z) + g(h(2)) — (2", 7) =0,
ie.
97 (2")+9(h(2)) = (", h(@))|+[(f +2"oh)" (") + f(2)+ (" oh) () — (=", 7)] = 0,
which yields, thanks to Fenchel’s inequality, that
g*(z") + g(h(z)) — (=", h(Z)) = 0
{ (f + 2" o h)*(a") + f(Z) + (z" 0 h)(Z) — (2", 7) =0

1.e.

{ 2" € 9g(h(z))
z* € 0(f+ 2" o h)(Z),

and therefore we get

of+goh)@ < |J of+y oh)(z)

y*€0g(h(z))NY

Conversely, let z* € U I(f+y oh)(z), i.e. there exists y* € Y such
y*€0g(h(2))NYS

{ y* € dg(h(T))

that

z* € d(f+y*oh)(z)

(W', y = h(@)) + 9(h(@)) < 9(0), Yy €Y,

(2= 3) + (f + 3" o h)(@) < (f +° o h)(w), Vo € X.
By putting y := h(x), we have

(27,2 — 1) + f(Z) + g(W(T)) < f(z) + g(h(z)), Vo € X,
i.e. z* € O(f + g o h)(Z) and the converse inclusion is then proved. O

Corollary 4.4 Let A: X — Y be a continuous linear operator. Under the
condition (C.Q2) one has

O(f + g0 A)T) = 0f(z) + A*(9g(AT)).
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Proof. Putting Y, = {0} and using Corollary 4.3 with h := A, we get
Af+goM)@) =] o(f+y o A)(®).
y*€0g(AZ)

Let y* € 0g(AZ), since (y* o A) is a continuous linear form so it is semi-closed
and since dom (y* o A) = X then by applying Corollary 3.2 with g := y* o A,
we obtain

O(f +y* 0 A)(T) = 0f(z) + 9(A™y")(Z).
As A*y* is a linear continuous form, thus 0(A*y*)(z) = {A*y*} and therefore
O(f + g0 A)z) = 0f(x) + A"(9g(AZ)).

O

Corollary 4.5 Let A: X — Y be a continuous linear operator and C' and
D be two convex subsets of X and T € C N A~Y(D) := B. Suppose that D is
semi-closed and Ry (D — A(Z)) = X, then

Np(Z) = No(Z) + A*Np(Az).
Proof. It is easy to check that
0(Z) = 0c(T) + (0p 0 A)(Z),
and by applying Corollary 4.4 to f := d¢ and ¢ := dp we obtain
0dp(Z) = 06c(Z) + A*(0dp(AT)),

1.e.

Np(Z) = No(Z) + A*Np(Az).
O

As an application of this last corollary, we derive the optimality con-
ditions, related to the following mathematical programming problem

inf f(z),
(@) h(z) € =Yy
zeC

where X and Y are Fréchet spaces, f : X — R U {+o0} is a convex proper
function, h : X — YU{+o0} is a Y, -convex proper operator and C' a nonempty
subset of X supposed to be convex. In the following we will assume that Y,
is semi-closed.
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Proposition 4.2 Let T be a feasible point for the problem (Q) i.e. T € C'N
R (=YL). IfRL[Y.+h(Z)] =Y, then T is an optimal solution for the problem
(Q) if and only if there exists y* € Y such that (y*,h(Z)) = 0 and 0 €
O(f +dc +y* o h)(T).

Proof. z is an optimal solution for the problem (@) if and only if 0 €
O(f+90c+9d_y, oh)(Z). On the other hand since the cone is nonempty convex
closed and following [4] d_y, is Y,-nondecreasing, convex, proper and semi-
closed, hence all the hypothesis of Corollary 4.3 are satisfied and

O(f +dc + 8-y, o h)(7) = U af+dc+y oh)(a)

y Ny, (h@)NY]

which means that Z is an optimal solution of the problem (@) if and only if
there exists y* € Y such that (y*,h(Z)) =0and 0 € O(f +dc +y* o h)(z). O
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