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Abstract

A classical duality formula in general Banach spaces, usually es-
tablished for a convex proper lower semicontinuous perturbation under
one of the familiar Rockafellar, Robinson, Attouch-Brézis conditions, is
shown to hold in more general setting. We provide an application to
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1 Introduction.

Let X be a normed vector space and let f, g : X → R∪{+∞} be two con-
vex functions. Finding sufficient conditions ensuring the following fundamental
duality result

inf
x∈X

{f(x) + g(x)} + min
y∗∈Y ∗

{f∗(−y∗) + g∗(y∗)} = 0 (1.1)

is of crucial importance in convex analysis. Our main objective is to attempt
to prove that the statement (1.1) holds for a broad class of convex functions
whose epigraphs are semi-closed under some constraint qualification in the
setting of Fréchet spaces. This class has been studied by Laghdir in his recent
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paper [10] from the point of view of subdifferentiability. Let us point out
that this large class of convex functions includes convex lower semicontinuous
functions, cs-convex functions and cs-closed functions. We give an application
dealing with the convex composite optimization.

2 Preliminaries and Notations.

In what follows, for a given function f : X → R ∪ {+∞} we denote by

dom f : = {x ∈ X : f(x) < +∞}

its effective domain, by

Epi f : = {(x, r) ∈ X × R : f(x) ≤ r}

its epigraph and by

[f ≤ r] : = {x ∈ X : f(x) ≤ r}

its sublevel set at height r. We say that f is proper whenever dom f �= ∅.
Throughout this paper, we denote commonly by 〈, 〉 the duality pairing between
X and X∗ and between X∗ and X∗∗. The subdifferentiale of f at a point x̄ ∈ X
is by definition

∂f(x̄) : = {x∗ ∈ X∗ : f(x) ≥ f(x̄) + 〈x∗, x− x̄〉, ∀x ∈ X}.

The Legendre-Fenchel conjugate function of f is defined for any x∗ ∈ X∗ by

f∗(x∗) := sup
x∈X

{〈x∗, x〉 − f(x)}.

Let C be a subset of X. The cone that it generates is

R+C : =
⋃
λ≥0

λC,

its indicator function is

δC(x) :=

⎧⎨
⎩

0 if x ∈ C

+∞ otherwise.

The normal cone of C at x̄ is defined by

NC(x̄) := ∂δC(x̄) = {x∗ ∈ X∗ : 〈x∗, x − x̄〉 ≤ 0, ∀x ∈ C}.
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Let C be a subset of X. Following [8] we say that C is cs-closed if
whenever (xn)n∈� is a sequence in C and (αn)n∈� is a sequence in R

+ with∑∞
n=0 αn = 1 and x =

∑∞
n=0 αnxn exists in X, then x ∈ C . It is easy to see

that every cs-closed subset is convex. C is said to be semi-closed if C and its
closure C have the same interior. Also, if X is a locally convex space, then C
is said to be lower cs-closed if there exists a Fréchet space Y and a cs-closed
subset A of X × Y such that C = AX where AX denotes the projection of A
on the space X. There are plenty of sets that are cs-closed, lower cs-closed
or semi-closed (see [2], [3], [6], [7], [8], [13]). The subdifferential calculus and
duality theory associated with the class of cs-closed functions have been studied
by Laghdir [9] and Zǎlinescu [14].

Now, following [13], [14] and [10] we set

Definition 2.1 Let f : X → R ∪ {+∞}.
1. We say that f is semi-closed if it is proper and its epigraph is semi-closed.
2. We say that f is cs-closed (resp. lower cs-closed) if it is proper and its
epigraph is cs-closed (resp. lower cs-closed).
3. We say that f is cs-convex if f is proper and

f(x) ≤ lim inf
m→+∞

m∑
n=0

λnf(xn)

whenever, ∀n ∈ N, λn ≥ 0, xn ∈ X,
∞∑

n=0

λn = 1 and
∞∑

n=0

λnxn is convergent to

x in X.

Remark 2.1 1) Let us note that if f : X → R∪ {+∞} is proper, convex and
lower semicontinuous then it is cs-convex.
2) If f is cs-convex then it is cs-closed. Conversely, Zǎlinescu in [14] proved
that when f∗ is proper and f is cs-closed then f is cs-convex.
3) Every cs-closed function is semi-closed.
4) The indicator function δC of every convex semi-closed subset of X is semi-
closed.
5) In [10], Laghdir studied the subdifferentiability of a convex semi-closed
function, i.e. ∂f(x̄) �= ∅ whenever x̄ ∈ dom f , R+[dom f − x̄] = X and X is a
Féchet space. It was proved in [10], that this result falses under the weakened
condition: R+[dom f − x̄] is a closed vector subspace.
6) In [10], it was established a characterization for a semi-closed function by
means of its level sets given by: f : X → R∪ {+∞} is semi-closed if and only
if its level sets are semi-closed.
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3 The fundamental duality formula.

Our goal in this section is to setting up the well-known fundamental duality
result (1.1) for the class of convex semi-closed functions. This can be obtained
provided a certain constraint qualification. In order to derive this result we
will use the approach based on the use of a perturbation function. For this let
us consider the following condition

(C.Q1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X is a Fréchet space

f : X → R ∪ {+∞} convex and proper

g : X → R ∪ {+∞} convex, proper and semi-closed

there exists x̄ ∈ dom f ∩ dom g such that

R+[dom g − x̄] = X.

and the marginal function

p : X −→ R ∪ {+∞}
y �−→ p(y) = inf

x∈X
{f(x) + g(y + x)}

Obviously p is convex since it is a marginal function of a convex function.

Lemma 3.1 If inf
x∈X

{f(x) + g(x)} ∈ R and the condition (C.Q1) is satisfied,

then ∂p(0) �= ∅.
Proof. Let us note that the equality

R+[dom g] =
⋃

n,m≥0

m[g ≤ n]

is obtained simply by observing that

dom g =
⋃
n≥1

[g ≤ n].

Following [10], it follows from Baire’s Theorem and the fact that g is semi-
closed, that there exists some neighbourhood of zero U and some integer n ≥ 1
such that

g(y + x̄) ≤ n, ∀y ∈ U

which yields
p(y) ≤ f(x̄) + g(y + x̄) ≤ f(x̄) + n, ∀y ∈ U.
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Therefore, it follows that p is bounded above on a neighbourhood of zero
and since p(0) = inf

x∈X
{f(x) + g(x)} is finite and p is convex we obtain from a

classical convex analysis result (see [5]) that p is subdifferentiable at zero i.e.
∂p(0) �= ∅. �

Now, we are ready to state our main result.

Theorem 3.2 If inf
x∈X

{f(x) + g(x)} ∈ R and the condition (C.Q1) is satis-

fied, then

inf
x∈X

{f(x) + g(x)} + min
x∗∈X∗

{f∗(−x∗) + g∗(x∗)} = 0.

Proof. It is straightforward to see that for any x∗ ∈ X∗

p∗(x∗) = f∗(−x∗) + g∗(x∗),

so from the Fenchel’s inequality we have

p∗(x∗) + p(0) ≥ 0, ∀x∗ ∈ X∗

i.e.

inf
x∈X

{f(x) + g(x)} + f∗(−x∗) + g∗(x∗) ≥ 0, ∀x∗ ∈ X∗, (3.1)

which yields

inf
x∗∈X∗{f∗(−x∗) + g∗(x∗)} + inf

x∈X
{f(x) + g(x)} ≥ 0.

Since ∂p(0) �= ∅, taking z∗ ∈ ∂p(0) i.e.

p∗(z∗) + p(0) = 0, (3.2)

it results by combining (3.1) and (3.2) that

inf
x∈X

{f(x) + g(x)} + min
x∗∈X∗{f∗(−x∗) + g∗(x∗)} = 0.

�

Corollary 3.3 Let x∗ ∈ X∗ such that inf
x∈X

{f(x) + g(x) − 〈x∗, x〉} ∈ R and

assume that (C.Q1) holds, then we have

(f + g)∗(x∗) = min
y∗∈X∗{f∗(x∗ − y∗) + g∗(y∗)}.
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Proof. It suffices to apply Theorem 3.1 to the functions

F : X −→ R ∪ {+∞}
x �−→ F (x) = f(x) − 〈x∗, x〉

G : X −→ R ∪ {+∞}
x �−→ G(x) = g(x)

by observing that F and G verify together the condition (C.Q1). �

Corollary 3.4 Under the condition (C.Q1) we have

∂(f + g)(x̄) = ∂f(x̄) + ∂g(x̄).

Proof. The inclusion ∂f(x̄) + ∂g(x̄) ⊂ ∂(f + g)(x̄) is immediate.
Conversely, let x∗ ∈ ∂(f + g)(x̄), i.e.

(f + g)(x) − 〈x∗, x〉 ≥ f(x̄) + g(x̄) − 〈x∗, x̄〉, ∀x ∈ X,

and since x̄ ∈ dom f ∩ dom g, it follows that inf
x∈X

{f(x) + g(x) − 〈x∗, x〉} ∈ R.

As

(f + g)(x̄) + (f + g)∗(x∗) − 〈x∗, x̄〉 = 0,

and using Corollary 3.1, we obtain for some z∗ ∈ X∗ that

g∗(z∗) + f∗(x∗ − z∗) + f(x̄) + g(x̄) − 〈x∗, x̄〉 = 0,

by setting y∗ := x∗ − z∗, we have

[g∗(z∗) + g(x̄) − 〈z∗, x̄〉] + [f ∗(y∗) + f(x̄) − 〈y∗, x̄〉] = 0,

which yields, thanks to Fenchel’s inequality, that

⎧⎨
⎩

g∗(z∗) + g(x̄) − 〈z∗, x̄〉 = 0

f∗(y∗) + f(x̄) − 〈y∗, x̄〉 = 0

i.e.

⎧⎨
⎩

z∗ ∈ ∂g(x̄)

y∗ ∈ ∂f(x̄)

and therefore we get ∂(f + g)(x̄) ⊂ ∂f(x̄) + ∂g(x̄). �
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Corollary 3.5 Let C and D be two convex sets of X and x̄ ∈ C ∩ D.
Suppose that C is semi-closed and R+(C − x̄) = X, then

NC∩D(x̄) = NC(x̄) + ND(x̄).

Proof. It sufficies to apply Corollary 3.2 to the indicator functions δC and
δD. �

Corollary 3.6 Let C be a semi-closed convex cone with 0 ∈ C and let
x̄ ∈ X such that R+(C − x̄) = X. If inf

x∈C
f(x) ∈ R then one has

inf
x∈C

f(x) + min
x∗∈C0

f∗(−x∗) = 0.

Proof. Applying Theorem 3.1 to f and δC we obtain

inf
x∈C

f(x) + min
x∗∈X∗{f∗(−x∗) + sup

x∈C
〈x∗, x〉} = 0.

Since C is a cone it is easy to check that

C0 = {x∗ ∈ X∗ : sup
x∈C

〈x∗, x〉 ≤ 0},

hence
inf
x∈C

f(x) + min
x∗∈C0

{f∗(−x∗) + sup
x∈C

〈x∗, x〉} = 0.

We have 0 ∈ C , so for every x∗ ∈ C0 we get sup
x∈C

〈x∗, x〉 = 0, therefore

inf
x∈C

f(x) + min
x∗∈C0

f∗(−x∗) = 0.

�

Corollary 3.7 Let C be a semi-closed convex cone with 0 ∈ C and let
x̄ ∈ X such that R+(C − x̄) = X, then one has

dist(x̄, C) = max
x∗∈C0,‖x∗‖≤1

〈x∗, x̄〉.

Proof. Since inf
x∈C

‖x − x̄‖ ∈ R then applying Corollary 3.4 to f := ‖. − x̄‖
we obtain

inf
x∈C

‖x − x̄‖ = max
x∗∈C0

− f∗(−x∗).

After computing the conjugate function of f we get that for any x∗ ∈ X∗ we
have

f∗(x∗) = δ�X∗ (x∗) + 〈x∗, x̄〉,
where BX∗ is the closed unit ball of X∗. Hence we obtain

dist(x̄, C) = max
x∗∈C0,‖x∗‖≤1

〈x∗, x̄〉.
�
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Remark 3.1 One may ask a natural question if the fundamental duality for-
mula (1.1) holds under the weakened condition: R+[dom g] is a closed vector
subspace? The answer is no. Just take X an infinite dimensional Banach
space, f : X → R ∪ {+∞} a convex proper function, g : X → R ∪ {+∞} a
noncontinuous linear functional, Y := X × R, F : Y → R ∪ {+∞} defined by
F (x, t) = δ{(0,0)}(x, t) and G : Y → R ∪ {+∞} defined by G(x, t) = +∞ if
t �= 0 and G(x, 0) = g(x). It is easy to see that F and G are convex, proper,
G is semi-closed, R+[dom G] = X × {0} is a closed linear subspace and G is
nowhere subdifferentiable. So

⎧⎪⎪⎨
⎪⎪⎩

inf
(x,t)∈Y

{F (x, t) + G(x, t)} = 0

inf
(x∗,t∗)∈X∗×�

{F ∗(−x∗,−t∗) + G∗(x∗, t∗)} = +∞.

Hence the fundamental duality formula (1.1) falses.

4 Application to convex composite optimiza-

tion.

In this section, we assume that the space Y is equipped with a partial
preorder induced by a convex cone Y+ i.e. for any y1, y2 ∈ Y

y1 ≤Y y2 ⇔ y2 − y1 ∈ Y+

and an abstract maximal element +∞ will be adjoined to Y . A mapping
h : X → Y ∪ {+∞} is said to be Y+-convex in the sense that for any x0, x1 ∈
dom h := {x ∈ X : h(x) ∈ Y } and for any λ ∈ [0, 1] we have

h(λx0 + (1 − λ)x1) ≤Y λh(x0) + (1 − λ)h(x1).

A function g : Y → R ∪ {+∞} is said to be Y+-nondecreasing on a subset C
of Y if for any y1, y2 ∈ C we have

y1 ≤Y y2 ⇒ g(y1) ≤ g(y2).

In what follows, we extend to Y ∪ {+∞} the composite function (g ◦ h) by
setting (g ◦ h)(x) = sup

y∈Y
g(y) for any x /∈ dom h. Here Y ∗

+ denotes the positive

polar cone defined by

Y ∗
+ = {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0, ∀y ∈ Y+}.
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Many of the convex minimization problems arising in Applied Mathe-
matics, Operations research and Mathematical problems can be formulated as
the following convex composite problem

(P ) : inf
x∈X

(f + g ◦ h)(x),

where f : X → R ∪ {+∞} is convex and proper, g : Y → R ∪ {+∞} is
convex proper and nondecreasing on an appropriate subset of Y and h : X →
Y ∪ {+∞} is Y+-convex and proper.

The aim of this section is to formulate the dual problem (P ∗) as-
sociated to the primal problem (P ). For this, let us consider the following
constraint qualification

(C.Q2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X and Y are Fréchet spaces

f : X → R ∪ {+∞} convex and proper

g : Y → R ∪ {+∞} convex, proper and semi-closed

h : X → Y ∪ {+∞} Y+-convex and proper

there exists x̄ ∈ dom h ∩ dom f ∩ h−1(dom g) such that

R+[dom g − h(x̄)] = Y.

and the following auxiliary functions

f̃ : X × Y −→ R ∪ {+∞}
(x, y) �−→ f̃(x, y) = f(x) + δEpi h(x, y)

g̃ : X × Y −→ R ∪ {+∞}
(x, y) �−→ g̃(x, y) = g(y),

where Epi h := {(x, y) ∈ X ×Y : h(x) ≤Y y} is the epigraph of h. Obviously
f̃ and g̃ are both convex and proper.

Proposition 4.1 If inf
x∈X

(f + g ◦h)(x) ∈ R, g nondecreasing on Im h+Y+ and

the condition (C.Q2) is satisfied one has

inf
x∈X

(f + g ◦ h)(x) = max
y∗∈Y ∗

+

{−(f + y∗ ◦ h)∗(0) − g∗(y∗)}
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Proof. Let us note that for any x ∈ X

(f + g ◦ h)(x) = inf
y∈Y

{f̃ (x, y) + g̃(x, y)}

and dom f̃ = (dom f × Y ) ∩ Epi h, dom g̃ = X × dom g and for any λ ∈ R

we have [g̃ ≤ λ] = X × [g ≤ λ] and hence it is easy to check that the condition
(C.Q2) ensures that f̃ and g̃ satisfy together the qualification condition (C.Q1).
Therefore by virtue of Theorem 3.1 we get

inf
x∈X

(f + g ◦ h)(x) = inf
x∈X
y∈Y

{f̃ (x, y) + g̃(x, y)}

= max
x∗∈X∗
y∗∈Y

∗
{−f̃∗(−x∗,−y∗) − g̃∗(x∗, y∗)},

by expliciting the conjugate functions f̃∗ and g̃∗ we have

f̃∗(−x∗,−y∗) = (f + y∗ ◦ h)∗(−x∗) + δY ∗
+
(y∗)

g̃∗(x∗, y∗) = g∗(y∗) + δ{0}(x∗)

and thus we get

inf
x∈X

(f + g ◦ h)(x) = max
y∗∈Y ∗

+

{−(f + y∗ ◦ h)∗(0) − g∗(y∗)}

this completes the proof. �

Corollary 4.1 Let A : X → Y be a continuous linear operator. If inf
x∈X

(f +

g ◦ A)(x) ∈ R and the condition (C.Q2) is satisfied one has

inf
x∈X

(f + g ◦ A)(x) = max
y∗∈Y ∗

{−f∗(−A∗y∗) − g∗(y∗)},

where A∗ : Y ∗ → X∗ stand for the adjoint operator of A.

Proof. By putting Y+ = {0}, it is obvious that g is nondecreasing on the
whole space Y and Y ∗

+ = Y ∗. Therefore, by applying Proposition 4.1, with
h := A, we obtain

inf
x∈X

(f + g ◦ A)(x) = max
y∗∈Y ∗{−(f + y∗ ◦ A)∗(0) − g∗(y∗)}.

Since

(f + y∗ ◦ A)∗(0) = sup
x∈X

{−f(x) − 〈y∗ ◦ A, x〉}

= sup
x∈X

{−f(x) − 〈A∗y∗, x〉}

= f∗(−A∗y∗),
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hence we get

inf
x∈X

(f + g ◦ A)(x) = max
y∗∈Y ∗

{−f∗(−A∗y∗) − g∗(y∗)}.
�

Corollary 4.2 Let x∗ ∈ X∗ such that inf
x∈X

{f(x) + (g ◦h)(x)−〈x∗, x〉} ∈ R,

g nondecreasing on Im h + Y+ and the condition (C.Q2) is satisfied then

(f + g ◦ h)∗(x∗) = min
y∗∈Y ∗

+

{g∗(y∗) + (f + y∗ ◦ h)∗(x∗)}.

Proof. Let us consider the following function

F : X −→ R ∪ {+∞}
x �−→ F (x) = f(x) − 〈x∗, x〉,

by observing that F and g verify together the condition (C.Q2) and hence by
applying Proposition 4.1 we obtain

(f + g ◦ h)∗(x∗) = − inf
x∈X

{F (x) + (g ◦ h)(x)}

= min
y∗∈−Y ∗

+

{g∗(−y∗) + (F − y∗ ◦ h)∗(0)},

and since (F − y∗ ◦ h)∗(0) = (f − y∗ ◦ h)∗(x∗), we get the desired result. �

The next corollary concerns the calculus of the subdifferential of com-
posite convex functions using the preceding results.

Corollary 4.3 Under the condition (C.Q2) and g supposed to be nonde-
creasing on Im h + Y+ one has

∂(f + g ◦ h)(x̄) =
⋃

y∗∈∂g(h(x̄))∩Y ∗
+

∂(f + y∗ ◦ h)(x̄).

Proof. Let x∗ ∈ ∂(f + g ◦ h)(x̄) i.e.

(f + g ◦ h)(x) − 〈x∗, x〉 ≥ f(x̄) + (g ◦ h)(x̄) − 〈x∗, x̄〉, ∀x ∈ X,

and since x̄ ∈ dom h ∩ dom f ∩ h−1(dom g), it follows that

inf
x∈X

{f(x) + (g ◦ h)(x) − 〈x∗, x〉} ∈ R.

As
(f + g ◦ h)(x̄) + (f + g ◦ h)∗(x∗) − 〈x∗, x̄〉 = 0,
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and using Corollary 4.2, we obtain for some z∗ ∈ Y ∗
+ that

g∗(z∗) + (f + z∗ ◦ h)∗(x∗) + f(x̄) + g(h(x̄)) − 〈x∗, x̄〉 = 0,

i.e.

[g∗(z∗)+g(h(x̄))−〈z∗, h(x̄)〉]+[(f +z∗◦h)∗(x∗)+f(x̄)+(z∗◦h)(x̄)−〈x∗, x̄〉] = 0,

which yields, thanks to Fenchel’s inequality, that

⎧⎨
⎩

g∗(z∗) + g(h(x̄)) − 〈z∗, h(x̄)〉 = 0

(f + z∗ ◦ h)∗(x∗) + f(x̄) + (z∗ ◦ h)(x̄) − 〈x∗, x̄〉 = 0

i.e. ⎧⎨
⎩

z∗ ∈ ∂g(h(x̄))

x∗ ∈ ∂(f + z∗ ◦ h)(x̄),

and therefore we get

∂(f + g ◦ h)(x̄) ⊆
⋃

y∗∈∂g(h(x̄))∩Y ∗
+

∂(f + y∗ ◦ h)(x̄)

Conversely, let x∗ ∈
⋃

y∗∈∂g(h(x̄))∩Y ∗
+

∂(f +y∗◦h)(x̄), i.e. there exists y∗ ∈ Y ∗
+ such

that ⎧⎨
⎩

y∗ ∈ ∂g(h(x̄))

x∗ ∈ ∂(f + y∗ ◦ h)(x̄)

i.e. ⎧⎨
⎩

〈y∗, y − h(x̄)〉 + g(h(x̄)) ≤ g(y), ∀y ∈ Y,

〈x∗, x− x̄〉 + (f + y∗ ◦ h)(x̄) ≤ (f + y∗ ◦ h)(x), ∀x ∈ X.

By putting y := h(x), we have

〈x∗, x− x̄〉 + f(x̄) + g(h(x̄)) ≤ f(x) + g(h(x)), ∀x ∈ X,

i.e. x∗ ∈ ∂(f + g ◦ h)(x̄) and the converse inclusion is then proved. �

Corollary 4.4 Let A : X → Y be a continuous linear operator. Under the
condition (C.Q2) one has

∂(f + g ◦ A)(x̄) = ∂f(x̄) + A∗(∂g(Ax̄)).
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Proof. Putting Y+ = {0} and using Corollary 4.3 with h := A, we get

∂(f + g ◦ A)(x̄) =
⋃

y∗∈∂g(Ax̄)

∂(f + y∗ ◦ A)(x̄).

Let y∗ ∈ ∂g(Ax̄), since (y∗ ◦A) is a continuous linear form so it is semi-closed
and since dom (y∗ ◦ A) = X then by applying Corollary 3.2 with g := y∗ ◦ A,
we obtain

∂(f + y∗ ◦ A)(x̄) = ∂f(x̄) + ∂(A∗y∗)(x̄).

As A∗y∗ is a linear continuous form, thus ∂(A∗y∗)(x̄) = {A∗y∗} and therefore

∂(f + g ◦ A)(x̄) = ∂f(x̄) + A∗(∂g(Ax̄)).

�

Corollary 4.5 Let A : X → Y be a continuous linear operator and C and
D be two convex subsets of X and x̄ ∈ C ∩ A−1(D) := B. Suppose that D is
semi-closed and R+(D −A(x̄)) = X, then

NB(x̄) = NC(x̄) + A∗ND(Ax̄).

Proof. It is easy to check that

δB(x̄) = δC(x̄) + (δD ◦ A)(x̄),

and by applying Corollary 4.4 to f := δC and g := δD we obtain

∂δB(x̄) = ∂δC(x̄) + A∗(∂δD(Ax̄)),

i.e.
NB(x̄) = NC(x̄) + A∗ND(Ax̄).

�

As an application of this last corollary, we derive the optimality con-
ditions, related to the following mathematical programming problem

(Q)

⎧⎨
⎩

inf f(x),
h(x) ∈ −Y+

x ∈ C

where X and Y are Fréchet spaces, f : X → R ∪ {+∞} is a convex proper
function, h : X → Y ∪{+∞} is a Y+-convex proper operator and C a nonempty
subset of X supposed to be convex. In the following we will assume that Y+

is semi-closed.
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Proposition 4.2 Let x̄ be a feasible point for the problem (Q) i.e. x̄ ∈ C ∩
h−1(−Y+). If R+[Y++h(x̄)] = Y , then x̄ is an optimal solution for the problem
(Q) if and only if there exists y∗ ∈ Y ∗

+ such that 〈y∗, h(x̄)〉 = 0 and 0 ∈
∂(f + δC + y∗ ◦ h)(x̄).

Proof. x̄ is an optimal solution for the problem (Q) if and only if 0 ∈
∂(f + δC + δ−Y+ ◦h)(x̄). On the other hand since the cone is nonempty convex
closed and following [4] δ−Y+ is Y+-nondecreasing, convex, proper and semi-
closed, hence all the hypothesis of Corollary 4.3 are satisfied and

∂(f + δC + δ−Y+ ◦ h)(x̄) =
⋃

y∗∈N−Y+
(h(x̄))∩Y ∗

+

∂(f + δC + y∗ ◦ h)(x̄),

which means that x̄ is an optimal solution of the problem (Q) if and only if
there exists y∗ ∈ Y ∗

+ such that 〈y∗, h(x̄)〉 = 0 and 0 ∈ ∂(f + δC + y∗ ◦ h)(x̄). �
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