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Abstract

For λ ≥ 0, n ∈ N0, in [3], the authors introduced the operator Dn
λ ,

which is a generalized Ruscheweyh derivatives operator. In this paper,
some results on coefficient inequalities, growth and distortion theorems,
closure theorems and extreme points for the class of analytic functions
defined by aforementioned operator are obtained.
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1 Introduction

Let A(m) denote the class of functions of the form

f(z) = z +
∞∑

k=m+1

akz
k, (m ∈ N0 := {1, 2, 3, ...}, (1.1)

which are analytic and univalent in the unit disk U = {z : z ∈ C and |z| < 1}.
Also, let T (m) denote subclasses of A consisting of functions f of the form

f(z) = z −
∞∑

k=m+1

|ak|zk, (m ∈ N0 := {1, 2, 3, ...}. (1.2)
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In [3], the authors introduced the following linear operator Dλ
δ :

Dλ
δ f(z) =

z

(1 − z)λ+1
∗ Dδf(z)

where Dλf(z) = (1−λ)f(z)+λzf ′(z), δ > −1, λ ≥ 0 and z ∈ U which implies
that

Dn
λf(z) =

z(zn−1Dλf(z))n

n!
, (n ∈ N0 = N ∪ {0}).

It is clear that,

D0
λf(z) = (1 − λ)f(z) + λzf ′(z) = Dλf(z),

D1
δf(z) = (1 − λ)zf ′(z) + λz(zf ′(z))′, λ ≥ 0.

Note that if f is given by (1.1), then we can write

Dn
λf(z) = z +

∞∑
k=m+1

[
1 + λ(k − 1)

]
C(n, k)akz

k,

where λ ≥ 0, m, n ∈ N0 and

C(n, k) =

(
k + n − 1

n

)
=

k−1∏
j=1

(j + n)

(k − 1)!
.

Let Kn
λ (m, α) the subclass of A(m) consisting of functions f which satisfy

�
{

z(Dn
λf(z))′

Dn
λf(z)

}
> α, (z ∈ U),

for λ ≥ 0, m, n ∈ N0 and 0 ≤ α < 1.

Further, we define the class T Kn
λ (m, α) by:

T Kn
λ (m, α) = Kn

λ (m, α) ∩ T (m)

for λ ≥ 0, m, n ∈ N0 and 0 ≤ α < 1.

Note that T Kn
λ (m, α) ⊂ Kn

λ (m, α). Also note that various subclasses of
Kn

λ (m, α) and T Kn
λ (m, α) has been studied by many authors by suitable

choices of n, λ and m. For example

T K0
0 (1, α) ≡ T ∗(α), T K1

0(1, α) ≡ C(α), T K0
0 (m, α) ≡ Tα(m),

T K1
0 (m, α) ≡ Cα(m), T K0

λ(m, α) ≡ P (m, λ, α)(0 ≤ λ < 1),

andT K1
λ(m, α) ≡ C(m, λ, α)(0 ≤ λ < 1),
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etc. The classes T ∗(α) and C(α) were introduced and studied by Silverman
[1], and the classes Tα(m) and Cα(m) were studied by Chatterjea [7](see also
Srivastava et al. [2]). Whereas the classes P (m, λ, α) and C(m, λ, α) were,
respectively, studied by Altinatş [6] and Kamali and Aknulut [4]. Finally
we note that when λ = 0 in class Kn

λ (m, α) we have the class Rn(α), was
introduced and studied by Ahuja [5].

2 Coefficient Inequalities

In this section, we provide a necessary and sufficient condition for a function
f analytic in U to be in T Kn

λ (m, α).

Theorem 2.1 Let f be defined by (1.1). If 0 ≤ α < 1, λ > 0,

∞∑
k=m+1

(k − α)[1 + λ(k − 1)]C(n, k)|ak| ≤ (1 − α), (2.1)

where m,n ∈ N0, then f ∈ Kn
λ (m, α).

Proof. Assume that (2.1) holds true. It is sufficient to show that∣∣∣∣∣z(Dn
λf(z))′

Dn
λf(z)

− 1

∣∣∣∣∣ ≤ 1 − α.

We have∣∣∣∣∣z(Dn
λf(z))′

Dn
λf(z)

− 1

∣∣∣∣∣ =

∣∣∣∣∣z(Dn
λf(z))′ − Dn

λf(z)

Dn
λf(z)

∣∣∣∣∣
=

∣∣∣∣∣
∞∑

k=m+1

(k − 1)[1 + λ(k − 1)]C(n, k)akz
k

z +
∞∑

k=m+1

[1 + λ(k − 1)]C(n, k)akzk

∣∣∣∣∣

≤

∞∑
k=m+1

(k − 1)[1 + λ(k − 1)]C(n, k)|ak|

1 −
∞∑

k=m+1

[1 + λ(k − 1)]C(n, k)|ak|
.

This last expression is bounded above by 1 − α. We have

∞∑
k=m+1

(k − 1)[1 + λ(k − 1)]C(n, k)|ak|
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≤ (1 − α)
{

1 −
∞∑

k=m+1

[1 + λ(k − 1)]C(n, k)|ak|
}

,

which is equivalent to

∞∑
k=m+1

(k − α)[1 + λ(k − 1)]C(n, k)|ak| ≤ (1 − α) �

by (2.1). Hence f ∈ Kn
λ (m, α).

Theorem 2.2 Let f be defined by (1.2). Then f ∈ T Kn
λ (m, α) if and only if

(2.1) is satisfied.

Proof. In view of Theorem 2.1, it suffices to show the only if part. Assume
that

�
{

z(Dn
λf(z))′

Dn
λf(z)

}
= �

{z −
∞∑

k=m+1

k[1 + λ(k − 1)]C(n, k)|ak|zk

z −
∞∑

k=m+1

[1 + λ(k − 1)]C(n, k)|ak|zk

}
> α.

Choose values of z on real axis so that
z(Dn

λf(z))′

Dn
λf(z)

is real. Letting z → 1− through

real values, we have

1 −
∞∑

k=m+1

k[1 + λ(k − 1)]C(n, k)|ak|zk ≥ α −
∞∑

k=m+1

α[1 + λ(k − 1)]C(n, k)|ak|zk.

Thus we obtain
∞∑

k=m+1

(k − α)[1 + λ(k − 1)]C(n, k)|ak| ≤ (1 − α),

which is (2.1). Hence the theorem.

Finally the result is sharp with the extremal function f given by

f(z) = zp − 1 − α

(k − α)[1 + λ(k − 1)]C(n, k)
zk (k ≥ m + 1, m ∈ N0). �

(2.2)

Corollary 2.1 Let the function f defined by (1.2) be in the class T Kn
λ (m, α).

Then we have

|ak| ≤
1 − α

(k − α)[1 + λ(k − 1)]C(n, k)
( k ≥ m + 1, m ∈ N0). (2.3)

This equality is attained for the function f given by (2.1).
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3 Distortion Theorems

A distortion property for function f to be in the class T Kn
λ (m, α) is given as

follows:

Theorem 3.1 Let the function f defined by (1.2) be in the class T Kn
λ (m, α).

Then for |z| = r we have

r − 1 − α

(m + 1 − α)[1 + λm]C(n, m + 1)
rm+1 ≤ |f(z)| ≤

r +
1 − α

(m + 1 − α)[1 + λm]C(n, m + 1)
rm+1

with equality for

f(z) = z − 1 − α

(m + 1 − α)[1 + λm]C(n, m + 1)
zm+1, (z = ∓r). (3.1)

Proof. In view of Theorem 2.2, we have

(m + 1 − α)[1 + λm]C(n, m + 1)

∞∑
k=m+1

|ak|

≤
∞∑

k=m+1

(k − α)[1 + λ(k − 1)]C(n, k)|ak| ≤ 1 − α,

Hence

|f(z)| ≤ r +
∞∑

k=m+1

|ak|rk ≤ r + rm+1
∞∑

k=m+1

|ak|

≤ r +
1 − α

(m + 1 − α)[1 + λm]C(n, m + 1)
rm+1

and

|f(z)| ≥ r −
∞∑

k=m+1

|ak|rk ≥ r − rm+1

∞∑
k=m+1

|ak|

≥ r − 1 − α

(m + 1 − α)[1 + λm]C(n, m + 1)
rm+1.

Thus complete the proof. �
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Theorem 3.2 Let the function f defined by (1.2) be in the class T Kn
λ (m, α).

Then for |z| = r we have

1 − (m + 1)(1 − α)

(m + 1 − α)[1 + λm]C(n, m + 1)
rm ≤ |f ′(z)| ≤

1 +
(m + 1)(1 − α)

(m + 1 − α)[1 + λm]C(n, m + 1)
rm

with equality for

f(z) = z − (m + 1)(1 − α)

(m + 1 − α)[1 + λm]C(n, m + 1)
zm+1, (z = ∓r).

Proof. we have

|f ′(z)| ≤ 1 +

∞∑
k=m+1

k|ak|rk−1 ≤ 1 + (m + 1)rm

∞∑
k=m+1

|ak|

≤ 1 +
(m + 1)(1 − α)

(m + 1 − α)[1 + λm]C(n, m + 1)
rm

and

|f ′(z)| ≥ 1 −
∞∑

k=m+1

k|ak|rk−1 ≥ 1 − (m + 1)rm
∞∑

k=m+1

|ak|

≥ 1 − (m + 1)(1 − α)

(m + 1 − α)[1 + λm]C(n, m + 1)
rm.

This complete the proof. �

Corollary 3.1 Let the function f defined by (1.2) be in the class T Kn
λ (m, α).

Then the disk U is mapped onto a domain that contains the disk

|w| < 1 − 1 − α

(m + 1 − α)[1 + λm]C(n, m + 1)

The result is sharp with extremal function (3.1).

4 Extreme Points

We shall now determine the extreme points of the class T Kn
λ (m, α).
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Theorem 4.1 Let fn(z) = z and

fk(z) = z − 1 − α

(k − α)[1 + λ(k − λ)]C(n, k)
zk (k = m + 1, m + 2, ...; λ ≥ 0; n ∈ N0).

Then f ∈ T Kn
λ (m, α) if and only if it can be expressed in the form

f(z) =

∞∑
k=m

μkfk(z),

where μk ≥ 0 and
∞∑

k=m

μk = 1.

Proof. Suppose that

f(z) =

∞∑
k=m

μkfk(z) = μnfn(z) +

∞∑
k=m+1

μkfk(z)

= μnz +

∞∑
k=m+1

μk

[
z − 1 − α

(k − α)[1 + λ(k − λ)]C(n, k)
zk
]

= μnz +
∞∑

k=m+1

μkz −
∞∑

k=m+1

μk
1 − α

(k − α)[1 + λ(k − λ)]C(n, k)
zk

=

( ∞∑
k=m

μk

)
z −

∞∑
k=m+1

μk
1 − α

(k − α)[1 + λ(k − λ)]C(n, k)
zk

= z −
∞∑

k=m+1

μk
1 − α

(k − α)[1 + λ(k − λ)]C(n, k)
zk.

Then

∞∑
k=m+1

μk

(
1 − α

(k − α)[1 + λ(k − λ)]C(n, k)

)(
(k − α)[1 + λ(k − λ)]C(n, k)

1 − α

)

=
∞∑

k=m+1

μk =
∞∑

k=m

μk − μm = 1 − μm ≤ 1.

Thus f ∈ T Kn
λ (m, α) by Theorem 2.2.

Conversely, suppose that f ∈ T Kn
λ (m, α). By using (2.2) we may set

μk =
(k − α)[1 + λ(k − λ)]C(n, k)

1 − α
|ak| and μm = 1 −

∞∑
m+1

μk.
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Then

f(z) =

∞∑
k=m

μkfk(z),

and the proof of Theorem 4.1 is complete. �
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