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Abstract

A model for the growth of weighted networks is proposed. The model
is based on the edge preferential selection. By the master equation ap-
proach, the distributions of strength, weight and degree are provided
and results show that each distribution has a power-law tail. Particu-
larly, the network has a high clustering coefficient.
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1 Introduction

In the past few years, much attention has been focused on the study of com-

plex networks. For example, World Wide Web (WWW) [2,18], Internet [29],

scientific collaboration networks (SCN) [26,10], world wide airport networks

(WAN) [17,7], etc. Many of these systems share a common scale-free feature

that the degree distribution P (k) decays as a power law, i.e., P (k) ∝ k−γ,

and the exponent γ is scattered between 2 and 3. The idea of incorporating

preferential attachment in a growing network, first introduced by Barabási

and Albert [4,5], has lead to a considerable number of models for scale-free
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networks [1,11-15,19,20,22,24,27,31,32]. Researchers have mainly focused on

the topological property of the networks, that is, unweighted networks. How-

ever, many technological, biological and social systems are best described by

weighted networks, whose properties and dynamics depend not only on their

structures but also on the connection weights between their nodes. For in-

stance, the number of coauthored papers of two scientists is very important

in the understanding of the web of scientists with collaborations [26], and the

diversity of the predator-prey interaction and of metabolic reactions is consid-

ered a critical ingredient of ecosystems [28,21] and metabolic networks[3], and

the number of available seats in flights between two airports is an important

quantity in the characterization of WAN.

A network is usually expressed by a graph, whose nodes are the elements

of the system and edges represent the interactions between them. For a topo-

logical network, the graph can be expressed via its adjacency matrix W, whose

element wij = 1 if node i and j are connected, and wij = 0 otherwise. Sim-

ilarly, a weighted network can be described by a weighted adjacency matrix

W, whose element wij represents the weight on the edge connecting node i

and j. For the sake of simplicity, we only consider undirected networks in this

paper, where the weights are symmetric, i.e., wij = wji. As a generalization

of the degree, the strength si of node i, defined as si =
∑

j∈ν(i) wij , where the

sum runs over the set ν(i) of neighbors of node i, is an important quantity in

weighted networks. The strength of a node integrates the information about

its connectivity and the weights of its links. For instance, the strength in

WAN provides the actual traffic going through a node and indicates the size

and importance of an airport in a certain extent. For the SCN, the strength is

a measure of scientific productivity. Recent studies [7,23,16] have shown that

the distributions of node strength and edge weight are heavy tailed in many

weighted networks. Many models have been proposed to investigate the mech-

anism responsible for the properties found in many natural weighted networks

[8,9,33,35,36,37].

In most previous network models, the probability Πi that node i is chosen

to be connected to the new node often relates directly to the quantities of node

i, like node degree ki [4,5], strength si [8], fitness ηi [37,6], etc. Differentially,

Dorogovtsev et al. proposed an evolving network model where the new node

will be linked to both ends of an existing link selected randomly [15]. By

the master equation approach [14], the degree distribution of the network was

provided,

P (k) =
12

k(k + 1)(k + 2)
. (1)
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Liu et al. indicated that, generally, a realistic network grows in time accord-

ing to an attachment rule that is neither completely preferential nor completely

random. In terms of the quantity Πi, it should contain both a deterministic

component reflecting preferential attachment, and a random component as

well [25]. In particular, they assumed

Πi =
(1 − q)ki + q∑

j

[(1 − q)kj + q]
, (2)

where 0 ≤ q ≤ 1 and the summation is over the whole network at a give

time. Controlled by a simple parameter q, the model can produce a scale-free

network with the degree distribution

P (k) ∝ k−(3+ q
m(1−q)

), (3)

where the parameter m represents the number of links a new node possess.

In present paper, we introduce a weighted network model based on edge

preferential selection. At each time step, a new node is added with two edges

that connect the new node to both ends of a preferentially selected link. Mean-

while, the weight of the link selected preferentially will be strengthened. Using

the master equation approach, we analyze the properties of the network pro-

duced by present model. Results show that the model can produce a network

with the power-law distributions of strength, weight and degree, and the clus-

tering coefficient of the network shows a high value at the same time.

2 The model

Inspired by the work in Ref. [15,25], we propose a model to study the self-

organization of weighted evolving networks. The algorithm goes as follows:

(i) Initial condition: Starting with three nodes connected each other. The

weight of each link is assigned 1.

(ii) Growth: Add a new node with two edges that connect the new node

to both ends of an existing link. The preferential probability that edge eij will

be selected is given by:

P (wij) =
(1 − q)wij + q∑

ekl∈E

[(1 − q)wkl + q]
, (4)

where 0 ≤ q ≤ 1 and E represents the set of all edges. The weight of each new

edge is assigned 1.
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(iii)Weight evolution: Add 1 to the weight wij of edge eij selected in the

previous step.

(iv) The whole process is repeated from step (ii), until the desired size of

the network is reached.

After t time steps, the model leads to a network with t + 3 nodes, 2t + 3

edges, and the total weight of the network is
∑

ekl∈E

wkl = 3t + 3.

3 Strength, weight and degree distributions

We will investigate the strength, weight and degree distributions by the

analysis. At each time step, if an edge eij of node i is selected preferentially,

then node i will be connected to the new node and the degree ki of node i will

increases by 1, meanwhile, the weight wij of edge eij increases by 1, therefore,

the strength si of node i increases by 2. Consequently, the strength si of node

i displays the linear property:

si = 2ki − 2. (5)

At time t, the probability that the weight wij of edge eij increases by 1 is given

by:

p1(wij) =
(1 − q)wij + q∑

ekl∈E

[(1 − q)wkl + q]
=

(1 − q)wij + q

(3 − q)t + 3
. (6)

Thus, the probability that the strength si of node i increases by 2 is

p2(si) =
∑

j∈ν(i)

p1(wij) =
(1 − q)si + qki

(3 − q)t + 3
=

(1 − q
2
)si + q

(3 − q)t + 3
. (7)

We denote p(s, i, t) the probability that at time t node i has a strength s.

Let

p(s, t) =

t∑
i=1

p(s, i, t)/t. (8)

Thus, the strength distribution can be defined as

P (s) = lim
t→∞

p(s, t). (9)

Similarly, we have the definitions of p(k, i, t), p(k, t) and p(k) for the node

degree. We denote i1, i2 the two nodes linked by node i when it enter the

system. Let

P (w, t) =

t∑
i=1

[p(w, eii1, t) + p(w, eii2, t)]

2t
, (10)
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where p(w, eij, t) represents the probability that at time t edge eij has a weight

w. Thus, the weight distribution can be defined as

P (w) = lim
t→∞

p(w, t). (11)

The main properties of present model are the following.

Theorem 3.1 If lim
t→∞

p(s, t) exists and lim
t→∞

t[p(s, t + 1) − p(s, t)] = 0, then

P (s) =
(3 − q)Γ(7−2q

2−q
)Γ( s

2
+ q

2−q
)

(5 − q)Γ( 2
2−q

)Γ( s
2

+ 5−q
2−q

)
, (12)

thus,

P (s) ∼ A1s
− 5−2q

2−q , for large s (13)

where s are even numbers and A1 is a constant.

Proof. p(s, i, t) satisfies the following master equation by utilizing the total

probability formula:

p(s, i, t + 1) = p2(s − 2)p(s − 2, i, t) + [1 − p2(s)]p(s, i, t). (14)

From Eq. (14), we have

(t + 1)p(s, t + 1) − p(s, t + 1, t + 1)

= p2(s − 2)tp(s − 2, t) + [1 − p2(s)]tp(s, t). (15)

Note that p(s, t + 1, t + 1) = δs,2 and lim
t→∞

t[p(s, t + 1) − p(s, t)] = 0. Inserting

Eq. (7) into Eq. (15) and letting t → ∞, we derive the following recursive

equation:

P (s) − δs,2 =
(1 − q

2
)(s − 2) + q

3 − q
P (s − 2) − (1 − q

2
)s + q

3 − q
P (s), (16)

with solution

P (s) =

⎧⎪⎨
⎪⎩

(2−q)(s−2)+2q
(2−q)s+6

P (s − 2) , s ≥ 4

3−q
5−q

, s = 2

. (17)
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Using the Stirling formula, we obtain the following from Eq. (17):

P (s) =
(3 − q)Γ(7−2q

2−q
)Γ( s

2
+ q

2−q
)

(5 − q)Γ( 2
2−q

)Γ( s
2

+ 5−q
2−q

)

∼ (3 − q)Γ(7−2q
2−q

)
√

2π( s
2

+ q
2−q

)
s
2
+ q

2−q
− 1

2 e−( s
2
+ q

2−q
)

(5 − q)Γ( 2
2−q

)
√

2π( s
2

+ 5−q
2−q

)
s
2
+ 5−q

2−q
− 1

2 e−( s
2
+ 5−q

2−q
)

∼ A1s
− 5−2q

2−q , (18)

where A1 =
(3−q)Γ(7−2q

2−q
)

(5−q)Γ( 2
2−q

)
2

5−2q
2−q , i.e., the strength distribution of the network

follows a power law for large s, with the exponent γs:
5
2
≤ γs = 5−2q

2−q
≤ 3. The

proof is completed.

Theorem 3.2 If lim
t→∞

p(w, t) exists and lim
t→∞

t[p(w, t + 1) − p(w, t)] = 0, then

P (w) =
(3 − q)Γ(w + q

1−q
)Γ(5−2q

1−q
)

(4 − q)Γ(w + 4−q
1−q

)Γ( 1
1−q

)
, (19)

thus,

P (w) ∼ A2w
− 4−2q

1−q , for large w (20)

where A2 is a constant and 0 ≤ q < 1.

Proof. p(w, eij, t) satisfies the following master equation by utilizing the total

probability formula:

p(w, eij, t + 1) = p1(w − 1)p(w − 1, eij , t) + [1 − p1(w)]p(w, eij, t). (21)

From Eq. (22), we have

2(t+1)p(w, t+1)−2δw,1 = 2p1(w−1)tp(w−1, t)+2[1−p1(w)]tp(w, t). (22)

Note that lim
t→∞

t[p(w, t + 1)− p(w, t)] = 0. Inserting Eq. (6) into Eq. (22) and

letting t → ∞, we obtain the following recursive equation:

P (w) − δw,1 =
(1 − q)(w − 1) + q

3 − q
P (w − 1) − (1 − q)w + q

3 − q
P (w), (23)

with solution

P (w) =

⎧⎪⎨
⎪⎩

(1−q)(w−1)+q
(1−q)w+3

P (w − 1) , w ≥ 2

3−q
4−q

, w = 1

. (24)
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Similarly, when 0 ≤ q < 1, from Eq. (24) we have

P (w) =
(3 − q)Γ(5−2q

1−q
)Γ(w + q

1−q
)

(4 − q)Γ( 1
1−q

)Γ(w + 4−q
1−q

)

∼ A2w
− 4−2q

1−q , (25)

where A2 =
(3−q)Γ(5−2q

1−q
)

(4−q)Γ( 1
1−q

)
. Consequently, when 0 ≤ q < 1, the weight distri-

bution of the network follows a power law for large w, with the exponent γw:

4 ≤ γw = 4−2q
1−q

< ∞. The proof is completed.

Particularly, when q = 1, from Eq. (24) we have P (w) = 2 · 3−w, i.e.,

the weight distribution P (w) decays exponentially. Indeed, when q = 1, the

selection of edge is completely random, which may result into the homogeneous

property of the edge weight of the network.

Theorem 3.3 If lim
t→∞

p(k, t) exists and lim
t→∞

t[p(k, t + 1) − p(k, t)] = 0, then

P (k) =
(3 − q)Γ(7−2q

2−q
)Γ(k + 2q−2

2−q
)

(5 − q)Γ( 2
2−q

)Γ(k + 3
2−q

)
, (26)

thus,

P (k) ∼ A3k
− 5−2q

2−q , for large k, (27)

where A3 is a constant.

Proof. Obviously, the probability p3(ki) that the degree ki of node i increases

by 1 is equal to the probability p2(si) that the strength si of node i increases

by 2, i.e.,

p3(ki) = p2(si) =
(1 − q

2
)(2ki − 2) + q

(3 − q)t + 3
=

(2 − q)ki + 2q − 2

(3 − q)t + 3
. (28)

Similarly, p(k, i, t) satisfies the following equation:

p(k, i, t + 1) = p3(k − 1)p(k − 1, i, t) + [1 − p3(k)]p(k, i, t). (29)

From Eq. (29), we have

(t+1)p(k, t+1)−p(k, t+1, t+1) = p3(k−1)tp(k−1, t)+[1−p3(k)]tp(k, t). (30)

Note that lim
t→∞

t[p(k, t + 1) − p(k, t)] = 0 and p(k, t + 1, t + 1) = δk,2. Inserting

Eq. (28) into Eq. (30) and letting t → ∞, we derive the following recursive

equation:

p(k) − δk,2 =
(2 − q)(k − 1) + 2q − 2

3 − q
p(k − 1) − (2 − q)k + 2q − 2

3 − q
p(k), (31)
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with solution

P (k) =

⎧⎪⎨
⎪⎩

(2−q)(k−1)+2q−2
(2−q)k+q+1

P (k − 1) , k ≥ 3

3−q
5−q

, k = 2

. (32)

Similarly, from Eq. (32) we have

P (k) =
(3 − q)Γ(7−2q

2−q
)Γ(k + 2q−2

2−q
)

(5 − q)Γ( 2
2−q

)Γ(k + 3
2−q

)

∼ A3k
− 5−2q

2−q , (33)

where A3 =
(3−q)Γ(7−2q

2−q
)

(5−q)Γ( 2
2−q

)
, it means that the degree distribution also follows a

power law for large k, with the exponent γk:
5
2
≤ γk = 5−2q

2−q
≤ 3. The proof is

completed.

4 Clustering coefficient

Along with the scale-free property of the networks, another significant quan-

tity C, namely clustering coefficient, is widely used to analyze the structure

of the systems. Actually, in many real networks, especially in social networks,

the clustering coefficient C shows a high value. The clustering coefficient of

node i [34] is defined as

Ci =
2Ei

ki(ki − 1)
, (34)

where Ei denotes the number of the existing links between all neighbors of

node i, and ki is the degree of node i. Then, the clustering coefficient of the

whole network is the average:

C =
1

N

N∑
i=1

Ci, (35)

where N is the size of the network. Obviously, the clustering coefficient Ci

measures the local cohesiveness in the neighborhood of node i and the average

clustering coefficient C expresses the statistical level of cohesiveness measuring

the global density of interconnected vertex triplets in the network.

The WS model [34] shows a high clustering but without the power-law

degree distribution, while the BA model [4,5] with the scale-free nature does

not possess the high clustering. In present model, at each time step the new
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node is linked to both ends of an existing ling, then a new triad is formed, which

may result in a high value of the clustering coefficient. We can calculate the

clustering coefficient using a slight variation of the rate equation approach [30]:

for each vertex ∂E(k)/∂k = 1 with the initial condition E(2) = 1, resulting in

E(k) = k − 1. Thus, the clustering coefficient of a vertex of degree k equals

C(k) =
2E(k)

k(k − 1)
=

2

k
. (36)

The average clustering coefficient is obtained by using the degree distribution:

C =
∞∑

k=2

P (k)C(k), (37)

yielding a numerical value of C = 0.793, 0.769 and 0.739 for q = 0, 0.5 and 1,

respectively. Consequently, the network produced by present model shows a

high value of the clustering coefficient.

5 Conclusions

In present paper, we have proposed a weighted network model based on

edge preferential selection. The model results in scale-free behavior for the

strength, weight and degree distributions, and the exponents are controlled

by a parameter q. Particularly, at each time step a new triad is formed by

the newly added node, so the network shows a high value of the clustering

coefficient C.

References

[1] R. Albert and A.-L. Barabási, Statistical mechamics of complex networks,

Rev. Mod. Phys., 74 (2002), 47-97.

[2] R. Albert, H. Jenog and A.-L. Barabási, Diameter of the world-wide web,

Nature, 401 (1999), 130-131.
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