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Abstract

In the present work we study the lineal stability of a relative equi-
librium for the problem of the gyrostat in newtonian interaction with
three spherical rigid bodies or punctual masses. Geometrically the rel-
ative equilibrium is characterized by a particular symmetry, i.e., the
rigid bodies have all the same mass m and form an equilateral triangle.
On the other hand, the gyrostat of mass m0 with revolution symmetry
around the third axis of inertia is located in the center of this triangle
rotating with an angular velocity ωe, that will be determined, perpen-
dicular to the plane formed by the previous spherical masses.
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1 Introduction

In the last few years some papers about the problem of roto-translational mo-
tion of celestial bodies have appeared. They show a new interest in the study
of configurations of relative equilibria and new methods have been proposed
(see [1], [2] for details about these new methods).

Let us remember that a gyrostat is a mechanical system S , composed of
a rigid body S ′, and other bodies S ′′ (deformable or rigid) connected to it,
in such a way that their relative motion with respect to its rigid part do not
change the distribution of mass of the total system S [3].

In our previous works [4,5,6], the non-canonical Hamiltonian dynamics of
n + 1 bodies in Newtonian attraction, where n of them are rigid bodies with
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spherical distribution of mass (or material points) and the other one is a tri-
axial gyrostat, is considered. Using the symmetries we obtain the equations
of motion of the reduced problem, the Casimir function of the system, the
equations that determine the relative equilibria and global conditions for their
existence of them. Besides, the variational characterization of these equilibria
and three invariant manifolds of the problem were obtained. The equations of
motion in these manifolds are described by means of a canonical Hamiltonian
system.

In a first approach to the qualitative study of this system, we will describe
the approximate dynamics that arises in a natural way when we take the
multipolar development of the potential and truncate it until first order.

In [4,6] we have obtained a family of relative equilibria for the problem
of the gyrostat in newtonian interaction with three spherical rigid bodies or
punctual masses. Geometrically the relative equilibrium is characterized by
a particular symmetry, i.e., the rigid bodies have all the same mass m and
form an equilateral triangle. On the other hand, the gyrostat of mass m0 with
revolution symmetry around the third axis of inertia is located in the center
of this triangle rotating with an angular velocity ωe, that will be determined,
perpendicular to the plane formed by the previous spherical masses.

The purpose of the present work is the study of the lineal stability of
this family of relative equilibria as a natural continuation to the previously
mentioned works.

Equations of motion

Let us consider m0, m1, m2, m3 the masses of the gyrostat S0 and the spherical
rigid bodies (or material points) S1, S2 and S3. According with [6] we use the
following notation

M3 = m2 + m3, M2 = m1 + m2 + m3, M1 = m0 + m1 + m2 + m3

g1 =
m2m3

M3
, g2 =

m0M3

M2
, g3 =

m0M2

M1

For u, v ∈ R
3, u · v is the dot product, | u | is the Euclidean norm of the

vector u and u×v is the cross product. I�3 is the identity matrix and 0 is
the zero matrix of order three. z = (Π, u1, p1, u2, p2,u3,p3) ∈ R

21 to be a
generic element of the twice reduced problem, where Π = IΩ + lr is the total
rotational angular momentum vector of the gyrostat in the body frame, which
is attached to its rigid part J and whose axes have the direction of the principal
axes of inertia of S0 and lr = (0, 0, l) is the constant gyrostatic momentum.
I = diag(I1, I1, I3) is the diagonal tensor of inertia of the gyrostat, u1, u2,
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u3, p1, p2 and p3 are respectively the barycentric coordinates and the linear
momenta expressed in the body frame J.

The non-canonical dynamics of a gyrostat in Newtonian attraction with
three spherical rigid bodies (or mass points), is described in [6] by means of
the following Lie-Poisson system (R21,B,H), being

H(z) =

3∑
i=1

| pi |2
2gi

+
1

2
ΠI

−1Π − lr · I
−1Π + V

the Hamiltonian of the system and

B(z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Π̂ û1 p̂1 û2 p̂2 û3 p̂3

û1 0 I�3 0 0 0 0
p̂1 −I�3 0 0 0 0 0
û2 0 0 0 I�3 0 0
p̂2 0 0 −I�3 0 0 0
û3 0 0 0 0 0 I�3

p̂3 0 0 0 0 −I�3 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

the Poisson tensor.
In B(z), v̂ is considered to be the image of the vector v ∈ R

3 by the
standard isomorphism between the Lie Algebras R

3 and so(3), i.e.

v̂ =

⎛
⎝ 0 −v3 v2

v3 0 −v1

−v2 v1 0

⎞
⎠

The equations of motion can be written in the following form

dz

dt
= B(z)∇zH(z). (1)

From the previous formula, we obtain the differential equations of motion
(i = 1, 2, 3)

dΠ

dt
= Π×Ω + u1×∇u1V + u2×∇u2V + u3×∇u3V

dui

dt
= ui×Ω+

1

gi
pi,

dpi

dt
= pi×Ω−∇uiV

(2)

where Ω =I
−1(Π − lr) is the angular velocity of the gyrostat S0 and ∇uiV the

gradient of V with respect to the variable ui.
Important elements of B(z) are the associate Casimir functions. We con-

sider the total angular momentum L given by

L = Π+
3∑

i=1

ui×pi

Then the following result is obtained (see [6] for details).
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Proposition 1. If ϕ is a real smooth function no constant, then ϕ( |L|2
2

) is
a Casimir function of the Poisson tensor B(z). Moreover KerB(z) =< ∇zϕ >.
We also have dL

dt
= 0, which means that the total angular momentum vector

remains constant.

Potential energy of the system

The potential of the system is

V (u1,u2,u3) = −

⎛
⎜⎝Gm2m3

| u1 | +
Gm1m2

| u2−m3

M3
u1 |

+
Gm1m3

| u2+
m2

M3
u1 |

+

Gm1

∫
S0

dm(Q)

| Q + u3−M3

M2
u2 |

+ Gm2

∫
S0

dm(Q)

| Q + u3+
m1

M2
u2 − m3

M3
u1 |

+Gm3

∫
S0

dm(Q)

| Q + u3+
m1

M2
u2 +

m2

M3
u1 |

⎞
⎟⎠

Considering the multipolar development of the potential, supposing that
the involved bodies are at much more mutual distances than their individual
dimensions of the same ones, we can develop the potential in quickly convergent
series.

Under the previous considerations the potential, until the first order, comes
given by

V (1) = −

⎛
⎜⎝Gm2m3

| u1 | +
Gm1m2

| u2+
m3

M3
u1 |

+
Gm1m3

| u2−m2

M3
u1 |

⎞
⎟⎠

−1

2

⎛
⎜⎜⎝ Gm1α

| u3−M3

M2
u2 |3

+
Gm2α

| u3+
m1

M2
u2 +

m3

M3
u1 |3

+
Gm3α

| u3+
m1

M2
u2 − m2

M3
u1 |3

⎞
⎟⎟⎠

+
1

2

⎛
⎜⎜⎝ 3Gm1f1

| u3−M3

M2

u2 |5
+

Gm2f2

| u3+
m1

M2
u2 +

m3

M3
u1 |5

+
Gm3f3

| u3+
m1

M2
u2 − m2

M3
u1 |5

⎞
⎟⎟⎠
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with α = 2I1 + I3 and

f1(u2,u3) =

(
u3−M3

M2
u2

)t

· I

(
u3−M3

M2
u2

)

f2(u1,u2,u3) =

(
u3+

m1

M2

u2 +
m3

M3

u

)t

· I

(
u3+

m1

M2

u2 +
m3

M3

u1

)

f3(u1,u2,u3) =

(
u3+

m1

M2
u2 − m2

M3
u1

)t

· I

(
u3+

m1

M2
u2 − m2

M3
u1

)

1.1 Approximate dynamics of order one

We will call approximate dynamics of order one to the differential equations
given by the following expression

dz

dt
= {z,H(z)}(z) = B(z)∇zH(z) (3)

with

H(z) =

3∑
i=1

| pi |2
2gi

+
1

2
ΠI

−1Π − lr · I
−1Π + V (1)

Of the equations of motion, it is easy to verify the following result.

Proposition 2. π3 is an integral of the motion.

2 Relative equilibria

The relative equilibria are the equilibria of the doubly reduced problem. Let
us consider ze = (Πe,u

e
i ,p

e
i ) the equilibrium in an approximate dynamics of

first order, this verifies the following equations for i = 1, 2, 3

Πe×Ωe + ue
1× (∇u1V)e + ue

2× (∇u2V)e + ue
3×(∇u3V)e = 0

pe
i

gi

+ ue
i×Ωe = 0, pe

i×Ωe = (∇uiV)e
(4)

with (∇uiV)e is the evaluation of ∇uiV in ze.
Of the previous conditions, by means of algebraic manipulations, the fol-

lowing equations are deduced

| Ωe |2| ue
i |2 −(ue

i · Ωe)
2 = 1

gi
(ue

i · (∇uiV)e), (i = 1, 2, 3) (5)

The last equation allows us to obtain | Ωe | in the equilibria.



1062 J. A. Vera

2.1 Lagrangian equilibria in a approximate dynamics of

order one

Definition 3. Will we say that ze is a Lagrangian relative equilibrium
when Ωe be orthogonal to U = span(ue

1,u
e
2,u

e
3) and dim(U) = 2.

It is easy to verify the following result.

Proposition 4. If ze is a Lagrangian relative equilibrium then

ue
1× (∇u1V)e + ue

2× (∇u2V)e + ue
3×(∇u3V)e = 0

that is to say moments are not exercised on the gyrostat.

After some algebraic calculations with (4) and (5) the following result is
obtained (see [6] for details).

Proposition 5. ze= (Πe,u
e
1,p

e
1,u

e
2,p

e
2,u

e
3,p

e
3) given by

ue
1 = (

√
3Z, 0, 0), pe

1 = (0,
√

3g1ωeZ, 0)

ue
2 = (0, 3

2
Z, 0), pe

2 = (−3
2
g2ωeZ, 0, 0)

ue
3 = (0, 0, 0), pe

3 = (0, 0, 0)

Ωe = (0, 0, ωe), Πe = (0, 0, Cωe + l)

where

ω2
e =

G(m
√

3 + 3m0)

3Z3
+

Gβ

Z5

with m1 = m2 = m3 = m, the masses of the Si (i = 1, 2, 3), m0 the mass
of S0,

√
3Z is the distance from Si to Sj , (i �= j and i, j ∈ {1, 2, 3}) and

β = 3(I3 − I1)/2 is a relative equilibrium in approximate dynamics of order
one.

2.2 Stability of ze

The tangent flow of the equations (3) in the equilibrium ze, comes given by

dδz

dt
= U(ze)δz

with δz = z − ze and U(ze) the jacobian matrix of (3) in ze.
Carrying out an appropriate election of the units, in order to have the

minimum number of parameters, the characteristic polynomial of U(ze) is de-
termined by the following expression

P (λ) = λ3(λ2 + Φ2)(λ2 + ω̃2
e)

2(λ4 + mλ2 + n)(λ8 + pλ6 + qλ4 + rλ2 + s)
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Figure 1: Relative Equilibrium ze

with m =
√

3+3k−21β, n = −6β(13β+
√

3+3k) and the coefficients p, q, r, s

expressed in Appendix A, ω̃2
e = (3+k

√
3)

3
+ β, Φ = (A−C)�ωe+l

A
and k = m0

m
.

If the roots of (λ4 +mλ2 +n)(λ8 +pλ6 +qλ4 +rλ2 +s) are in the imaginary
axis, then ze is linearly stable since

Q(λ) = λ(λ2 + Φ2)(λ2 + ω̃2
e)(λ

4 + mλ2 + n)(λ8 + pλ6 + qλ4 + rλ2 + s)

is the minimum polynomial of the matrix U(ze).
Denoting h = λ8 + pλ6 + qλ4 + rλ2 + s, if m, n > 0, m2 − 4n > 0 and

r, s > 0, 3p2 − 8q > 0, pr − 16s > 0

p2qr − 48sr − 9sp3 + 32pqs − 4q2r + 3pr2 > 0

p2q2 − 3rp3 − 6p2s − 4q3 + 14pqr + 16qs − 18r2 > 0

discrim(h) > 0

with

discrim(h) = 18p3rqs − 4p3r3 − 128q2s2 + 16q4s

−4q3r2 − 27p4s2 − 80prq2s + 256s3 − 27r4 − 6p2r2s

−192prs2 + 18pr3q + 144qp2s2 + q2p2r2 − 4q3p2s + 144sr2q

then ze is linearly stable.
Let us consider Ωi (i = 1, 2, . . . , 10) the regions of the parametric plane

kβ associated to the previous inequalities, which are polynomial inequalities
in the previous parametric plane.
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With the help of the program MathematicaTM we conclude ∩Ωi �= ∅. Then
ze is linearly stable for all k, β in some certain region of the parametric plane
kβ.

Figure 2: Region of Linear Stability

2.2.1 Stability of ze in zero order

In zero order approximate dynamics (β = 0) the characteristic polynomial is

P (λ) = λ5(λ2 + Φ2)(λ2 + ω̃2
e)

3(λ8 + pλ6 + qλ4 + rλ2 + s)

with coefficients p = (2 − (
√

3 − 3)k), q = (8k2 + 2 − 17k) and

r =
k(5

√
3 − 18)(25k2 − 219

√
3 + 1494 + (235

√
3 − 4383)k)

2988
,

s =
(133 − 60

√
3)((64

√
3 + 81)k − 249)2

330672

with Φ = (A−C)�ωe+l
A

being ω̃2
e = (3+k

√
3)

3
.

The minimum polynomial of the matrix U(ze) is

Q(λ) = λ2(λ2 + Φ2)(λ2 + ω̃2
e)(λ

8 + pλ6 + qλ4 + rλ2 + s)

then ze is linearly unstable.
Spectral stability is a necessary condition to obtain nonlinear Lyapunov

stability of a equilibrium in Hamiltonian systems [7].
Each positive root of the polynomial σ4 − pσ3 + qσ2 − rσ + s corresponds

to a couple of imaginary roots of the polynomial λ8 + pλ6 + qλ4 + rλ2 + s.
Applying Descarte’s rules of signs we conclude that the polynomial does not
have all the roots in the positive real axis (see Appendix B). And by Sturm
Theorem the polynomial σ4 − pσ3 + qσ2 − rσ + s has the maximum of three
real roots in the positive real axis. Then ze is unstable.
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3 Conclusions

In this paper we used geometric-mechanics methods to study the relative equi-
librium ze obtained in previous works.

The relative equilibrium ze in zero order approximate dynamics is unstable.
As consequence of the previous result if S0 is very close to a sphere that is, if
I3 − I1 ≈ 0, then for all k, ze is unstable.

In order one approximate dynamics if (k, β) ∈ ∩Ωi then ze is linear stable.
In a next work we will analyze the nonlinear stability of ze be using the Energy-
Casimir method [4,5].

A Coefficients of h(λ) in approximate dynam-

ics of order one.

The coefficients p, q, r, s comes given by the following formulas

p =
(−2016k2−3888k)β+288k3−432k2+144

√
3k2

144k2

q =
(−432 k2+26244)β2+(−12096k2−3744k3+5832 k+312

√
3k2)β

144k2

+5043
√

3k3−1728k3+144k4+576k2

144k2

r =
(472392+52416k2+291600k)β3+(−47628

√
3k+85968k2+320760k+4608k3

144k2

+
−12984

√
3k2+8748

√
3)β2+(1944

√
3k+59988k2−2064

√
3k3−1728k4+432k3

144k2

+
−1620k−14904

√
3k2β)+3972 k3−180k2−1296k4+196

√
3k2+360

√
3k4−1260

√
3k3

144k2

s =
(97344k2+1285956+707616 k)β4+(44928 k3+1061424k−34320

√
3k2+455328k2

144k2

+
−183708

√
3−175284

√
3k)β3+(−96228

√
3k+19683−102780

√
3k2−17280

√
3k3+13122k

144k2

+
346827k2+5184k4+101088k3)β2+(−2160

√
3k4+972

√
3k+54630 k3+4644k2−16512

√
3k2

144k2

+
7776k4+4374k−21276

√
3k3)β+279k2+162 k3−1620

√
3k4+3591 k4−792

√
3k3+108

√
3k2

144k2
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B Signs of coefficients of h(λ) in approximate

dynamics of order zero

Value of k p q r s Value of k p q r s

k < k0 − + + + k2 < k < k3 − + − +

k = k0 − 0 + + k = k3 − + − 0

k0 < k < k1 − − + + k3 < k < k4 − + − +

k = k1 − − 0 + k = k4 0 + − +

k1 < k < k2 − − − + k > k4 + + − +

k = k2 − 0 − +

with

k0=
3
2
−7

√
3

16
−
√

659−336−√
3

16
, k1=

315
√

3−993+3
√

130276−60654
√

3

2(49
√

3−45)

k2=
3
2
−7

√
3

16
−
√

659−336−√
3

16
, k3=

88
√

3−18
2(31+12

√
3)

, k4=
3+

√
3

3
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