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Abstract
In this article we consider an inverse parabolic problem of linear heat

equation with nonlinear boundary condition. We identify the temper-
ature and the unknown radiation term from an overspecified condition
on the boundary. We propose a numerical algorithm based on finite
difference method and least square technique. Results show that an
excellent estimation can be obtained for unknown functions.
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1 Introduction

Mathematically, the inverse problems belong to the class of ill-posed or ill-

conditioned problems; that is, their solutions do not satisfy the general re-

quirements of existence, uniqueness, and stability under small change to the

input data. Recently much attention has been given in the literature to the

development, analysis and implementation of accurate methods for the nu-

merical solution of parabolic inverse problems. So, the problem of determining

unknown parameters in parabolic differential equations has bean treated by

many authors [1-8]. Usually these type problems involve the determination

of a single unknown parameter from overspecified boundary data. In some

applications, however, it is desirable to be able to determine more than one

parameter from the given boundary data [2,6]. It is well known that the ra-

diative heat is a function of temperature. In certain radiative heat transfer it

is of interest to devise methods for evaluating radiation function by using only

measurements taken outside the medium.
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2 Mathematical formulation

In this paper, we consider the problem of determining an unknown function

P (u) which is defined on [0,1], and a function u(x, t) satisfying

ut = uxx, 0 < x < 1, 0 < t < T, (1)

u(x, 0) = f(x), 0 ≤ x ≤ 1, (2)

u(0, t) = g(t), 0 < t < T, (3)

ux(1, t) − P (u(1, t)) = χ(t), 0 < t < T, (4)

and the overspecified condition

u(1, t) = φ(t), 0 < t < T, (5)

where T is a given positive constant and f(x), g(t), χ(t) and φ(t) are piecewise-

continuous functions on their domains. The equation (1) may be used to

describe the flow of heat in a rod. Hence, we might think of this problem as

the problem of determining the unknown radiation term in a rod.

If the function P (u) is given, then there may be no solution for problem (1)-

(5). For an unknown P (u), we must therefore provide additional information

namely (5) to provide a unique solution (u, P (u)) to the inverse problem (1)-

(5) [2]. The nonlinear inverse problem (1)-(5) have been previously treated by

many authors [1-6].

2.1 Theorem

For any piecewise-continuous functions f , g, χ, and φ there is a unique solution

pair (u, P ), for the inverse problem (1)-(5), [8].

3 Numerical procedure

The application of the present numerical method to find the solution of problem

(1)-(5) can be described as follows.

First, for linearized nonlinear term in equation (4) we used Taylorś series

expansion. Therefore the function P (u) in equation (4) can be linearized by

Taylorś series expansion, as follows

P (u) = P (ū) + (
∂

∂u
P (u))u=ū(u − ū), (6)

where ū =
(

ū0, ū1, . . ., ūN

)
denotes the previously iterated solution.
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The discretized forms of problem obtained by using the finite difference

approximation and then the matrix form is given as

ΛU = Θ, (7)

where

Λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + 2r −r 0 0

−r 1 + 2r −r 0

. . . .

. . . .

. . . .

0 −r 1 + 2r −r

0 0 −2r 1 + 2r − 2rh∂P
∂u

(ūN)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and

U t =
(

u1,ν+1 u2,ν+1 . . . uN−1,ν+1 uN,ν+1

)
,

Θt =
(

u1,ν + u0,ν+1 u2,ν . . . uN−1,ν uN,ν + Ω(ν)
)
,

where

Ω(ν) = 2rhP (ūN) − 2rhūN
∂P

∂u
(ūN) + 2rhχ(νk + k).

Note that equation (7) is a linear equation.

The LU-Decomposition algorithm is used to solve

U t =
(

u1,ν+1 u2,ν+1 . . . uN,ν+1

)
.

These updated values of U are used to calculate Λ and Θ for iteration. This

computational procedure is performed repeatedly until desired convergence is

achieved. In this work the polynomial form proposed for the unknown P (u)

before performing the inverse calculation. Therefore P (u) approximated as

P (u) = a0 + a1u + a2u
2 + ... + aqu

q, (8)

where {a0, a1, ..., aq} are constants which remain to be determined simultane-

ously.

To minimize the sum of the squares of the deviations between uN,ν+1 (calcu-

lated) and φ(ν(k+1)), we use least-squares method. The error in the estimate

E(a0, a1, ..., aq) =
N∑

ν=0

(uN,ν+1 − φ((ν + 1)k))2, (9)

which remain to be minimized. The estimated values of ai are determined

until the value of E(a0, a1, ..., aq) is minimized.
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4 Numerical results

In this section, by giving an example we are going to demonstrate some results

for unknown radiation term in the inverse problem (1)-(5), numerically. All

the computations are performed on the PC.

Example. In this example let us consider the following inverse problem

ut = uxx, 0 < x < 1, t > 0, (10)

u(x, 0) = cos(x), 0 < x < 1, (11)

u(0, t) = exp(−t) 0 < t < T, (12)

ux(1, t) − P (u(1, t)) = −1 − (cos 1 + sin 1) exp(−t), 0 < t < T, (13)

with the overspecified condition

u(1, t) = cos(1) exp(−t), 0 < t < T. (14)

The exact solution of this problem is

u(x, t) = cos(x) exp(−t),

and

P (u) = 1 + u.

To solve the problem (25)-(29), the unknown function P (u) defined as the

following form

P (u) = a0 + a1u.

Numerical Exact Numerical Exact Numerical Exact

μ uμ,1 uμ,1 uμ,2 uμ,2 uμ,3 uμ,3

1 0.893831 0.892299 0.809370 0.807368 0.732600 0.730553

2 0.857181 0.855032 0.776548 0.773665 0.703057 0.700041

3 0.796150 0.794070 0.721328 0.718504 0.653101 0.650129

4 0.712498 0.711100 0.645324 0.643430 0.584192 0.582200

5 0.608461 0.608424 0.550660 0.550525 0.498301 0.498135

6 0.491868 0.488886 0.449049 0.442362 0.410603 0.450266
Table 1.
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Numerical Exact Numerical Exact

μ uμ,4 uμ,4 uμ,5 uμ,5

1 0.662979 0.661032 0.599892 0.598126

2 0.636300 0.633424 0.575729 0.573145

3 0.591074 0.588261 0.534741 0.532281

4 0.528620 0.526796 0.478105 0.476665

5 0.450730 0.450731 0.407436 0.407839

6 0.375915 0.362175 0.344561 0.327710

Table 2.

The estimated values of a0, a1 are a0 = 0.988109 and a1 = 1. Tables 1 and 2,

respectively, shown the values of U in x = μh and t = νk when k = 1
10

, h = 1
6
.

5 Conclusion

A numerical method to estimate unknown radiation term is proposed for an

inverse problem of linear heat equation with nonlinear boundary condition

and from the illustrated example it can be seen that the proposed numerical

method is efficient and accurate to estimate the unknown radiation term.
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